A micro-perspective on variation and universals

Jeroen van Craenenbroeck ¹ Marjo van Koppen ²

¹CRISSP/KU Leuven, jeroen.vancraenenbroeck@kuleuven.be
²UiL-OTS/Utrecht University, j.m.vankoppen@uu.nl
Outline

Why microvariation?

Methodology

Micro versus macro

Exceptions and imperfect correlations
Why microvariation?

- it makes empirical sense: a treasure trove of new data
Why microvariation?

- it makes empirical sense: a treasure trove of new data
 - phenomena absent from standard language
Why microvariation?

▶ it makes empirical sense: a treasure trove of new data
 ▶ phenomena absent from standard language
 ▶ variations on phenomena present in standard language

▶ it makes theoretical sense: approaches an idealized experimental setting (cf. Kayne (1996))

▶ it works: robust patterns and systematic correlations
Why microvariation?

- it makes empirical sense: a treasure trove of new data
 - phenomena absent from standard language
 - variations on phenomena present in standard language
 - limits on variation
- it makes theoretical sense: approaches an idealized experimental setting (cf. Kayne (1996))
- it works: robust patterns and systematic correlations
Why microvariation?

- it makes empirical sense: a treasure trove of new data
 - phenomena absent from standard language
 - variations on phenomena present in standard language
 - limits on variation

- it makes theoretical sense: approaches an idealized experimental setting (cf. Kayne (1996))
Why microvariation?

- it makes empirical sense: a treasure trove of new data
 - phenomena absent from standard language
 - variations on phenomena present in standard language
 - limits on variation

- it makes theoretical sense: approaches an idealized experimental setting (cf. Kayne (1996))

- it works: robust patterns and systematic correlations
Why microvariation?

- phenomena absent from standard language
Why microvariation?

- phenomena absent from standard language

(1) da ze zaaile lachen.
 that they\textsubscript{CLITIC} they\textsubscript{STRONG} laugh
 ‘that they are laughing.’ (Wambeek)
Why microvariation?

- phenomena absent from standard language

 (1) da ze zaaile lachen.

 ‘that they are laughing.’ (Wambeek)

- variations on phenomena present in standard language
Why microvariation?

- phenomena absent from standard language

(1) da **ze** **zaaile** lachen.
 that they_{CLITIC} they_{STRONG} laugh
 ‘that they are laughing.’ (Wambeek)

- variations on phenomena present in standard language

(2) **T** en **goa** niemand nie dansn.
 it NEG goes no.one not dance
 ‘There will be no dancing.’ (Brugge)
Why microvariation?

- phenomena absent from standard language

 (1) da ze zaailə lachen.
 that they_{CLITIC} they_{STRONG} laugh
 ‘that they are laughing.’ (Wambeek)

- variations on phenomena present in standard language

 (2) T en goa niemand nie dansn.
 it NEG goes no.one not dance
 ‘There will be no dancing.’ (Brugge)

- limits on variation
Why microvariation?

- phenomena absent from standard language

 (1) \textit{da } \texttt{ze} \textit{ zaaile } lachen.
 that they\textsubscript{CLITIC} they\textsubscript{STRONG} laugh
 ‘that they are laughing.’
 (Wambeek)

- variations on phenomena present in standard language

 (2) \textit{T} en \texttt{goa} niemand nie dansn.
 it NEG goes no.one not dance
 ‘There will be no dancing.’
 (Brugge)

- limits on variation

 (3) \textit{*da } \texttt{ zaaile } \textit{ ze } lachen.
 that they\textsubscript{STRONG} they\textsubscript{CLITIC} laugh
 INTENDED: ‘that they are laughing.’
 (Wambeek)
Why microvariation?
Why microvariation?

<table>
<thead>
<tr>
<th>+SPLIT C</th>
<th>–SPLIT C</th>
</tr>
</thead>
<tbody>
<tr>
<td>+split D</td>
<td>East & West Flanders (N=59)</td>
</tr>
<tr>
<td>–split D</td>
<td>Opglabbeek, Sliedrecht, Hoek (N=3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>+SPLIT C</th>
<th>–SPLIT C</th>
</tr>
</thead>
<tbody>
<tr>
<td>+split D</td>
<td>Flemish Brabant & Antwerp (N=23)</td>
</tr>
<tr>
<td>–split D</td>
<td>Borgloon (N=1)</td>
</tr>
</tbody>
</table>
Outline

Why microvariation?

Methodology

Micro versus macro

Exceptions and imperfect correlations
Methodology

- traditional generative methodology ill-suited for large datasets with lots of variation
Methodology

- traditional generative methodology ill-suited for large datasets with lots of variation
- our approach: a combination of quantitative and qualitative analysis
Methodology

- traditional generative methodology ill-suited for large datasets with lots of variation
- our approach: a combination of quantitative and qualitative analysis
 - quantitative: exploratory statistical methods to discern patterns in the data
Methodology

- traditional generative methodology ill-suited for large datasets with lots of variation
- our approach: a combination of quantitative and qualitative analysis
 - quantitative: exploratory statistical methods to discern patterns in the data
 - qualitative: interpreting those patterns in terms of morphosyntactic parameters
Methodology

| | Brugge | Hulst | Dirksland | Ossendorf | Diksmuide |...
|-----|--------|-------|-----------|-----------|-----------|...
| CA | 1 | 1 | 1 | 0 | 1 |...
| CD | 1 | 1 | 0 | 1 | 1 |...
| SDR | 0 | 0 | 0 | 0 | 1 |...
| NEG | 1 | 0 | 0 | 0 | 1 |...
| CYN | 1 | 1 | 0 | 0 | 1 |...
| EXPL-T | 1 | 0 | 0 | 0 | 1 |...
| CMPR-IF | 0 | 1 | 0 | 0 | 1 |...
| ER.OBL | 1 | 0 | 0 | 0 | 1 |...
| THE+THAT | 1 | 0 | 0 | 1 | 1 |...
| GO-GET | 1 | 0 | 0 | 1 | 1 |...
Methodology

<table>
<thead>
<tr>
<th></th>
<th>Brugge</th>
<th>Hulst</th>
<th>Dirksland</th>
<th>Ossendrecht</th>
<th>Diksmuide</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CD</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SDR</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NEG</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CYN</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EXPL-T</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>CMPR-IF</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ER.OBL</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>THE+THAT</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>GO-GET</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

![Graph of Methodology]
Methodology

(4) the AgrC-parameter: C {does/does not} have unvalued ϕ-features.

(5) the D-parameter: DP {does/does not} have an extended left periphery.

(6) the C-parameter: CP {does/does not} have an extended left periphery.
Methodology

(4) the AgrC-parameter:
C {does/does not} have unvalued ϕ-features.
Methodology

(4) **the AgrC-parameter:**
C {does/does not} have unvalued ϕ-features.
Methodology

(4) **the AgrC-parameter:**
C {does/does not} have unvalued ϕ-features.

(5) **the D-parameter:**
DP {does/does not} have an extended left periphery.
Methodology

(4) **the AgrC-parameter:**
C {does/does not} have unvalued ϕ-features.

(5) **the D-parameter:**
DP {does/does not} have an extended left periphery.

(6) **the C-parameter**
CP {does/does not} have an extended left periphery.
Outline

Why microvariation?

Methodology

Micro versus macro

Exceptions and imperfect correlations
Micro versus macro

- hypothesis: there is no categorical difference between microvariation and macrovariation: the same principles apply but to different atoms
Micro versus macro

- hypothesis: there is no categorical difference between microvariation and macrovariation: the same principles apply but to different atoms
- two predictions:
Micro versus macro

- hypothesis: there is no categorical difference between microvariation and macrovariation: the same principles apply but to different atoms
- two predictions:
 - macroparametric distinctions are reproduced at a smaller scale in microvariation
Micro versus macro

- **hypothesis**: there is no categorical difference between microvariation and macrovariation: the same principles apply but to different atoms

- **two predictions**:
 - macroparametric distinctions are reproduced at a smaller scale in microvariation
 - microvariational differences find their macro-counterpart at a typological level
Micro versus macro

(7) the AgrC-parameter:
C {does/does not} have unvalued ϕ-features.
Micro versus macro

(7) the AgrC-parameter:
C {does/does not} have unvalued ϕ-features.

(8) Biberauer et al. (2014), Biberauer and Roberts (2015):

Are ϕ-features present on probes?

NO

Radical pro-drop

Yes

Are ϕ-features present on ALL probes?

No

Pronominal arguments

Yes

Are ϕ-features fully specified on SOME probes?

Non-pro-drop

No

Consistent null subject

Yes

Are ϕ-features fully specified on T?

No

...
Micro versus macro

(9) **the D-parameter:**
DP {does/does not} have an extended left periphery.

(10) **the C-parameter**
CP {does/does not} have an extended left periphery.
Micro versus macro

(9) the D-parameter:
DP {does/does not} have an extended left periphery.

(10) the C-parameter
CP {does/does not} have an extended left periphery.

(11) Are A'-features subject to Feature Inheritance?

NO

Generalized in situ

Yes

Are ALL A'-features subject to Feature Inheritance?

Yes

Consistently rich left periphery

No

Are SOME A'-features subject to Feature Inheritance?

C

Mixed effects of left-peripheral richness

D

v
Outline

Why microvariation?

Methodology

Micro versus macro

Exceptions and imperfect correlations
Exceptions and imperfect correlations

Three types of exceptions:
1. Historical relics
2. Problems with data elicitation
3. Orthogonal grammatical factors
Exceptions and imperfect correlations

1. Historical relics
2. Problems with data elicitation
3. Orthogonal grammatical factors
Exceptions and imperfect correlations

- three types of exceptions:
Exceptions and imperfect correlations

- three types of exceptions:
 1. historical relics
Exceptions and imperfect correlations

- three types of exceptions:
 1. historical relics
 2. problems with data elicitation
Exceptions and imperfect correlations

- three types of exceptions:
 1. historical relics
 2. problems with data elicitation
 3. orthogonal grammatical factors
References

