Negative indefinites are the result of remerge and fusion: Support from ellipsis

Jeroen van Craenenbroeck & Tanja Temmerman
CRiSSP/HUB/FUSL/Brussels

Main topic: the interaction between ellipsis and negation

Main claims:
• negative indefinites do not undergo QR or Agree/feature checking, but are the result of fusion with a Polº-head
• fusion between Polº and Dº comes about under multidominance
• ellipsis can block this kind of fusion

Outline:

1 Any/no interchangeability under ellipsis: empirical generalizations
2 Background for the analysis
 2.1 Possible analyses for negative indefinites and their interaction with VP-ellipsis (Johnson 2011)
 2.2 A multidominance analysis of WH-movement and Quantifier Raising (Johnson 2010)
3 The analysis: ellipsis blocks fusion
 3.1 The core of the analysis: negative indefinites involve multidominance (Johnson 2010)
 3.2 Returning to generalization #2: VP-ellipsis and the scope of no
 3.3 Returning to generalization #1: clausal vs. verbal ellipsis
4 Broader implications:
 Elided subject NPIs constitute no new argument for EPP-violation-repair
5 Summary and conclusions

1 Any/no interchangeability under ellipsis: empirical generalizations

1.1 Background: polarity switches under ellipsis

observation: polarity items and indefinites are interchangeable under ellipsis (cf. Sag 1976; Hardt 1993; Johnson 2001; Merchant 2011)

from any to some
(1) John didn't see anyone, but Mary did <see anyone/someone>.
(Sag 1976:157f.)

from some to any
(2) John saw someone, but Mary didn't <see someone/anyone>.
(Sag 1976:157f.)

from no to a
(3) I could find no solution, but Holly might <find no/a solution>.
(Johnson 2001:107)

this talk: a closer look at polarity switches involving negative indefinites

1.2 From any to no: clausal vs. verbal ellipsis

1.2.1 Clausal ellipsis: any can antecede the ellipsis of no

question: how can we tell if a clausal ellipsis site contains any or no?

(4) Q: Who didn't eat any cookies?
b. Mary <ate no cookies>.

answer: by looking at subject NPIs

(5) [context: the TV show American Idol]
 Q: Which song didn't anyone like?
b. Katie's song. Guess why!

note: the non-elliptical variants of (5) are ill-formed due to violations of NPI-licensing

(6) a. * Katie's song anyone didn't like.
b. * Guess why anyone didn't like Katie's song!

conclusion: the example in (5) shows that any can antecede the ellipsis of no in clausal ellipsis
Van Craenenbroeck/Temmerman

(7) a. [cP Katie’s song [cC’ <[TP [∀ _[Tº [vP _[Katie’s song]]]>]]]]
 b. Guess [cP why [cC’ <[TP [∀ _[Tº [vP _[Katie’s song]]]>]]]]

however: Merchant (2001) has argued that the EPP can be suspended under ellipsis (see also Den Dikken et al. 2000, Van Craenenbroeck & Den Dikken 2006, Van Craenenbroeck 2010)

⟨this means that the example in (5) can also be represented as in (8)⟩

(8) a. [cP Katie’s song [cC’ <[TP [∀ _[Tº [vP _[Katie’s song]]]>]]]]
 b. Guess [cP why [cC’ <[TP [∀ _[Tº [vP _[Katie’s song]]]>]]]]

conclusion: we need an ellipsis site where an NPI-subject is illicit both in its base-generated and in its derived position

test: the Immediate Scope Constraint (cf. Linebarger 1987; Guerzoni 2006; Lechner 2007)

(9) Immediate Scope Constraint (ISC)

An NPI is acceptable in a sentence S if in the LF of S [...] the NPI is in the Immediate Scope (IS) of [NOT]. [i.e.] [...] only if (1) it occurs in [...] the [...] scope of NOT, and (2) [...] there are no 'logical' elements intervening between it and NOT.”

(10) a. He didn’t like anything. ¬ > NPI
 b. He didn’t always like anything. * ¬ > ∀ > NPI

→ the ISC can ensure that a subject NPI is illicit in an ellipsis site

(11) context: There’s a contest to choose which song will represent England in the Eurovision Song Contest. There are several qualifying rounds, a semi-final, and a final, and several judges choose their favorite song. When there’s a tie in the final, the consistency of the votes given to the songs is taken into account. In particular, if a judge has consistently voted for a certain song in every round, this is considered a bonus. Now, we’re in the final and there is a tie. We first want to eliminate the weakest song, i.e. we want to know if there is a song that no one consistently voted for. So we ask…

Q: Which song didn’t any judge always vote for?
A: Katie’s song.

note: in determining what the ellipsis site looks like in (11A), there are (at least) four options:

option #1: any judge in specTP

⟨this ellipsis site is ruled out due to lack of NPI-licensing⟩

(12) [cP Katie’s song [cC’ <[TP [∀ _[Tº [vP _[any judge [∀ _[Tº [vP _[any judge [∀ _[Tº [vP _[Katie’s song]]]>]]]>]]]>]]]]]

option #2: any judge in specTP

⟨this ellipsis site is ruled out due to the ISC (* ¬ > ∀ > NPI)⟩

(13) [cP Katie’s song [cC’ <[TP [∀ _[Tº [vP _[any judge [∀ _[Tº [vP _[any judge [∀ _[Tº [vP _[Katie’s song]]]>]]]>]]]>]]]]]

option #3: no judge in specTP

⟨this ellipsis site doesn’t violate any principles and leads to a converging derivation⟩

(14) [cP Katie’s song [cC’ <[TP [∀ _[Tº [vP _[any judge [∀ _[Tº [vP _[any judge [∀ _[Tº [vP _[Katie’s song]]]>]]]>]]]>]]]]]

option #4: no judge in specTP

⟨this ellipsis site doesn’t violate any principles and leads to a converging derivation (cf. Merchant 2001 on covert phrasal movement leading to the correct scope inside sluicing sites)⟩

(15) [cP Katie’s song [cC’ <[TP [∀ _[Tº [vP _[any judge [∀ _[Tº [vP _[any judge [∀ _[Tº [vP _[Katie’s song]]]>]]]>]]]>]]]]]

Aside Two other options include (i) short QR of the NPI subject any judge to a position in between Tº and always, and (ii) ellipsis ‘repairing’ the ISC or the NPI-licensing violation. The former would falsely predict (10) to be grammatical (with anything undergoing QR to a position in between didn’t and always). The latter is unlikely in light of the fact that both the ISC and the condition on NPI licensing have a prominent LF-component (for NPIs cf. Giannakidou 1998, Moscati 2000); it is well known that ellipsis cannot repair LF-violations (cf. e.g. Sauerland 1996).

conclusion: the ISC-example in (11) shows that in clausal ellipsis any can antecede the ellipsis of no

1.2.2 Verbal ellipsis: any cannot antecede the ellipsis of no

observation: in simple Q/A-pairs with VP-ellipsis in the A, any cannot antecede the ellipsis of no.

(16) [context: the film festival of Cannes]

Q: Who didn’t like any movie?
A: a. Quentin Tarantino didn’t like any movie.
 b. Quentin Tarantino liked no movie.
 c. Quentin Tarantino didn’t like any movie.
 d. * Quentin Tarantino didn’t like no movie.

note: the ill-formedness of (16Ad) is not due to the presence of a stressed auxiliary, as the effect persists in infinitival VPE with a focused subject:
from no to no: mixed results

(20) Q: Who liked no movie?
A: * Quentin Tarantino did <like no movie>.

(21) I know PETER offered no help, and I also expect JOHN to <offer no help>.

however: if no outscores an element outside of the ellipsis site, no/no-interchangeability fails

example #1: Neg>Mod-modals (cf. Cormack & Smith 2002; Iatridou & Sichel 2010)

can typically scopes below negation:

(22) a. John cannot go to this party.
 \(\neg > \bigcirc, \bigcirc > \neg \)

(23) Q: Who can offer no help?
 A: * Quentin Tarantino can <offer no help>. \(\neg > \bigcirc, \bigcirc > \neg \)

in VPE licensed by can, no cannot outscope the modal:

example #2: high PP-scope

the example in (24) famously has two readings (cf. Jackendoff 1972):

(24) Mary looks good with no clothes.
 = Mary doesn’t look good with any clothes. (the unfortunate dresser reading)
 = Mary looks good naked. (the nudity reading)

Haegeman (1995), Svenonius (2002): these two readings correlate with two different scope positions for no: high in the case of the unfortunate dresser, low in the case of nudity under VP-ellipsis only the naked reading survives:

(25) You say MARY looks good in no clothes, but I say JULIE does <look good in no clothes>.
 (*unfortunate dresser, +nudity)

from no to no: mixed results

(20) Q: Who liked no movie?
A: * Quentin Tarantino did <like no movie>.

(21) I know PETER offered no help, and I also expect JOHN to <offer no help>.

however: if no outscores an element outside of the ellipsis site, no/no-interchangeability fails

example #1: Neg>Mod-modals (cf. Cormack & Smith 2002; Iatridou & Sichel 2010)

can typically scopes below negation:

(22) a. John cannot go to this party.
 \(\neg > \bigcirc, \bigcirc > \neg \)

(23) Q: Who can offer no help?
 A: * Quentin Tarantino can <offer no help>. \(\neg > \bigcirc, \bigcirc > \neg \)

in VPE licensed by can, no cannot outscope the modal:

example #2: high PP-scope

the example in (24) famously has two readings (cf. Jackendoff 1972):

(24) Mary looks good with no clothes.
 = Mary doesn’t look good with any clothes. (the unfortunate dresser reading)
 = Mary looks good naked. (the nudity reading)

Haegeman (1995), Svenonius (2002): these two readings correlate with two different scope positions for no: high in the case of the unfortunate dresser, low in the case of nudity under VP-ellipsis only the naked reading survives:

(25) You say MARY looks good in no clothes, but I say JULIE does <look good in no clothes>.
 (*unfortunate dresser, +nudity)

from no to no: mixed results

(20) Q: Who liked no movie?
A: * Quentin Tarantino did <like no movie>.

(21) I know PETER offered no help, and I also expect JOHN to <offer no help>.

however: if no outscores an element outside of the ellipsis site, no/no-interchangeability fails

example #1: Neg>Mod-modals (cf. Cormack & Smith 2002; Iatridou & Sichel 2010)

can typically scopes below negation:

(22) a. John cannot go to this party.
 \(\neg > \bigcirc, \bigcirc > \neg \)

(23) Q: Who can offer no help?
 A: * Quentin Tarantino can <offer no help>. \(\neg > \bigcirc, \bigcirc > \neg \)

in VPE licensed by can, no cannot outscope the modal:

example #2: high PP-scope

the example in (24) famously has two readings (cf. Jackendoff 1972):

(24) Mary looks good with no clothes.
 = Mary doesn’t look good with any clothes. (the unfortunate dresser reading)
 = Mary looks good naked. (the nudity reading)

Haegeman (1995), Svenonius (2002): these two readings correlate with two different scope positions for no: high in the case of the unfortunate dresser, low in the case of nudity under VP-ellipsis only the naked reading survives:

(25) You say MARY looks good in no clothes, but I say JULIE does <look good in no clothes>.
 (*unfortunate dresser, +nudity)

from no to no: mixed results

(20) Q: Who liked no movie?
A: * Quentin Tarantino did <like no movie>.

(21) I know PETER offered no help, and I also expect JOHN to <offer no help>.

however: if no outscores an element outside of the ellipsis site, no/no-interchangeability fails

example #1: Neg>Mod-modals (cf. Cormack & Smith 2002; Iatridou & Sichel 2010)

can typically scopes below negation:

(22) a. John cannot go to this party.
 \(\neg > \bigcirc, \bigcirc > \neg \)

(23) Q: Who can offer no help?
 A: * Quentin Tarantino can <offer no help>. \(\neg > \bigcirc, \bigcirc > \neg \)

in VPE licensed by can, no cannot outscope the modal:

example #2: high PP-scope

the example in (24) famously has two readings (cf. Jackendoff 1972):

(24) Mary looks good with no clothes.
 = Mary doesn’t look good with any clothes. (the unfortunate dresser reading)
 = Mary looks good naked. (the nudity reading)

Haegeman (1995), Svenonius (2002): these two readings correlate with two different scope positions for no: high in the case of the unfortunate dresser, low in the case of nudity under VP-ellipsis only the naked reading survives:

(25) You say MARY looks good in no clothes, but I say JULIE does <look good in no clothes>.
 (*unfortunate dresser, +nudity)
2 Background for the analysis

2.1 Possible analyses for negative indefinites and their interaction with VP-ellipsis

Note: both generalizations crucially concern negative indefinites

Let's start from generalization #2, i.e. a negative indefinite in object position cannot scope out of a VP-ellipsis site

Note: there are various possible ways of allowing a negative indefinite (NI) in object position to take clausal scope:

(i) **Quantifier Raising**: a NI undergoes QR to take clausal scope, targeting the same position as QR of other generalized quantifiers or the scope position of sentential negation (cf. Geurts 1996; De Swart 2000; Iatridou & Zeijlstra 2010; Iatridou & Sichel 2011; Zeijlstra 2011)

(ii) **Agree/feature checking**: a sentential Polarity-head undergoes Agree/feature checking with a NI in object position (Giannakidou 1997; Weiß 2002; Tubau 2008; Haegeman & Lohndahl 2010; Penka & Zeijlstra 2010; Merchant 2011; Penka 2011)

(iii) **Fusion/amalgamation/ incorporation**: a NI in object position is the result of a (fairly superficial) process of fusion/amalgamation/incorporation between a clausal negative head and the indefinite determiner of the object DP (cf. Jacobs 1980; Rullman 1995)

Question: which of these processes can be blocked by VP-ellipsis?

(i) VPE does not block QR, provided Parallelism and Scope Economy are respected (cf. Fox 2000)

Note: (A consequence of Parallelism (Fox 2000:32)

a. In an ellipsis construction, the scopal relationship among the elements in the antecedent must be identical to the scopal relationship among the parallel elements in the ellipsis site.

b. The Ellipsis Scope Generalization (Fox 2000:83)

In an ellipsis construction, inverse scope is possible only if it is semantically distinct from surface scope both in the sentence that includes the ellipsis site and in the sentence that includes the antecedent.

(26) Some girl watched every movie, and some boy did <watch every movie> too.

a. $\exists > \forall \& \exists > \forall$ (both conjuncts take surface scope)

b. $\forall > \exists \& \forall > \exists$ (both conjuncts take inverse scope)

c. $\exists > \forall \& \exists > \forall$ (*Parallelism)

d. $\forall > \exists \& \exists > \forall$ (*Parallelism)

(27) A boy admires every teacher. Mary does <admire every teacher>, too.

Fox 2000:32, (21)

a. $\exists > \forall \& \exists > \forall$ (both conjuncts take surface scope)

b. $\forall > \exists \& \forall > \exists$ (*Scope Economy)

c. $\exists > \forall \& \exists > \forall$ (*Parallelism)

d. $\forall > \exists \& \exists > \forall$ (*Parallelism)

Note: in the illicit example in (28), both Scope Economy and Parallelism would be respected and hence QR should be allowed

(28) Q: Who can offer no help?

A: * Quentin Tarantino can <offer no help>. ($\neg > \Diamond$)

(ii) VPE does not block Agree/feature checking

E.g. T^* can agree with the elided associate of a there-expletive

(29) a. Jim said there wouldn't be many people at the party, but there were <many people at the party>.

b. Jim said there wouldn't be a linguist at the party, but there was <a linguist at the party>.

Note: T^* also agrees with the elided associate of a there-expletive when it is not the licenser of the ellipsis site

(30) a. Q: Will there be a linguist at the party?

A: Well, there seems to be likely to be <a linguist at the party>.

b. Q: Will there be (any) linguists at the party?

A: Well, there seem to be likely to be <any linguists at the party>.

(31) a. Q: Will there be an independent investigation of the murder?

A: There seems likely to be <an independent investigation of the murder>.

b. Q: Will there be independent investigations (by the CIA, the FBI, ...) of the murder?

A: There seem likely to be <independent investigations of the murder>.

Conclusion: an analysis of object NIs based on QR or Agree/feature checking cannot account for the blocking effect of VP-ellipsis

\rightarrow we pursue an analysis in terms of fusion instead
Two questions:
- how can an NI in object position be the result of fusion given that Polº and the object are arguably not adjacent?
- how exactly does VP-ellipsis block fusion?

2.2 A multidominance analysis of *wh*-movement and Quantifier Raising
(Johnson 2011)

wh-movement

(32) Which story about her₁ should no linguist₁ forget?

(33) key ingredients: - the question morpheme Q combines semantically with CP, but morphologically with D(P) (cf. also Cable 2007, 2010)
- there is an Agree relation between Q and D as a result of which D is spelled out in an agreeing form, i.e. as *which*
- the multiply dominated *WH*-phrase can in principle be spelled out in the high (moved) or the low (in situ) position

Quantifier Raising

(34) A student read every paper yesterday.

(35) key ingredients: - the universal quantifier Q combines semantically with NP and TP, but morphologically with D(P)
- there is no c-command between Q and D, and hence no Agree-relation; instead, Q and D undergo fusion, i.e. a morphological process that allows two adjacent terminals to be combined into one vocabulary item

problem: Q and D do not appear to be adjacent

Johnson (2011): the morphological requirements of Q and D force (cyclic) linearization to take place prior to the merger of TP and QP:
Negative indefinites are the result of rermerge and fusion

(37) a. The linearization of TP is:
 \[a < \text{student} \quad \text{student} < T \quad \text{read} < D \quad D < \text{paper} \quad \text{paper} < \text{yesterday} \]
 \[a < T \quad \text{student} < \text{read} \quad \text{read} < \text{paper} \quad D < \text{yesterday} \]
 \[a < D \quad \text{student} < \text{paper} \quad \text{paper} < \text{yesterday} \]
 \[a < \text{yesterday} \]
 b. The linearization of QP is:
 \[\forall < \text{paper} \]

Note: at this point in the derivation nothing intervenes between Q and D, i.e. \[\neg \exists x.(Q < x \& x < D) \] (and vice versa)
→ Johnson defines adjacency based on such linearizations

(38) **Adjacency** (Johnson 2011:25, fn.22)
Two terminal items \(\alpha \) and \(\beta \) are adjacent iff the linearization algorithm puts nothing in between them.

3 The analysis: ellipsis blocks fusion

3.1 The core of the analysis: negative indefinites involve multidominance (Johnson 2010)

(39) She likes no spiders. (\(= \text{She doesn't like (any) spiders} \))

(40) key ingredients: - the polarity head \(\text{Pol}^\circ \) combines semantically with VP, but morphologically with D(P)
- there is an Agree-relation between between \(\text{Pol}^\circ \) and \(D^\circ \) as a result of which \(D^\circ \) is spelled out in an agreeing form, i.e. as \textit{no}

supporting evidence:

(i) In many languages, NIs transparently consist of two morphemes \(\langle \text{negation and indefinite} \rangle \)
(\(\text{cf. Sauerland 2000} \))

(41) a. Jon leser \textit{inger} romaner.
 \[\text{John reads no novels} \]
 \[\text{John reads no novels.} \]
 b. Jon leser \textit{ikke noen} romaner.
 \[\text{John reads not any novels} \]
 \[\text{John does not read any novels.} \]
(\(\text{Norwegian, Sauerland 2000:423, (17)-(18)} \))

(ii) An Agree-analysis would predict negation (the head \(\text{Pol}^\circ \)) and the agreeing indefinite (the head \(D^\circ \)) to be able to be spelled out simultaneously (\(\text{cf. Cable 2007, 2010 on} \) Tlingit, where \(Q^\circ \) and the WH-form of \(D^\circ \) co-occur), \textit{qua non} (cf. (42)) \(> < \) an analysis in terms of fusion (correctly) predicts the two to be in complementary distribution

(42) * John did not buy nothing. (* under the single negation reading)

Conclusion: negative indefinites in object position are the result of fusion \(\text{Pol}^\circ \) and \(D^\circ \)
3.2 Returning to generalization #2: VP-ellipsis and the scope of *no

three central assumptions:

1. 2 PolPs (NegPs), one dominating and one dominated by TP

 Haegeman 2002; Butler 2003; Holmberg 2003; Van Craenenbroeck 2010

 \[(43)\]
 \[
 \begin{array}{c}
 \text{PolP}_1 \\
 \text{Pol}_1^\circ \\
 \text{TP} \\
 \text{T}^\circ \\
 \text{PolP}_2 \\
 \text{Pol}_2^\circ \\
 \text{VP} \\
 \end{array}
 \]

2. VP-ellipsis = ellipsis of the complement of T°

 \[(44)\]
 \[
 \begin{array}{c}
 \text{PolP}_1 \\
 \text{Pol}_1^\circ \\
 \text{TP} \\
 \text{T}^\circ \\
 \text{VP-ellipsis} \\
 \text{<PolP}_2> \\
 \text{Pol}_2^\circ \\
 \text{VP} \\
 \end{array}
 \]

3. ellipsis of α involves the non-pronunciation of any terminal element dominated by α and
 the deletion from the Ordering Table of all statements referring to terminal elements
 dominated by α (Fox & Pesetsky 2003, 2004)

recall:

\[(45)\] Generalization #2: The VPE/NI-Generalization
a negative indefinite in object position cannot scope out of a VP-ellipsis site

\[(46)\]
Q: Who can offer no help?
A: * Quentin Tarantino can <offer no help>. (¬ > 0)

\[(47)\]
Q: Who liked no movie?
A: ? Quentin Tarantino did <like no movie>.

derivation of (46):

step 1: merger of VP

\[(48)\]
\[
\begin{array}{c}
\text{VP} \\
\text{DP} \\
\text{Q.T.} \\
\text{V}^\circ \\
\text{DP} \\
\text{offer} \\
\text{D}^\circ \\
\text{NP} \\
\text{help} \\
\end{array}
\]

step 2: spell-out of VP

\[(49)\]
The linearization of VP is:

Q.T. < offer offer < D offer < help D < help
Q.T. < D offer < help
Q.T. < help

step 3: merger of Pol_2° and T°

\[(50)\]
\[
\begin{array}{c}
\text{TP} \\
\text{T}^\circ \\
\text{PolP}_2 \\
\text{Pol}_2^\circ \\
\text{VP} \\
\text{DP} \\
\text{Q.T.} \\
\text{V}^\circ \\
\text{DP} \\
\text{offer} \\
\text{D}^\circ \\
\text{NP} \\
\text{help} \\
\end{array}
\]
step 4: Tº attracts the subject and triggers deletion of its complement

(51)

\[
\begin{aligned}
& \text{TP} \\
& \text{DP} \quad \text{TP} \\
& \text{Q.T.} \quad <\text{PolP}> \\
& \text{can} \\
& \text{Polº} \quad \text{VP} \\
& \text{DP} \quad \text{VP} \\
& \text{Vº} \quad \text{DP} \\
& \text{offer} \quad \text{Dº} \quad \text{NP} \quad \text{help}
\end{aligned}
\]

note: this is the point in the derivation where Polº and Dº would normally fuse (right before the merger of PolP and TP)

however: at this point, Dº has already been elided, which means there is nothing to fuse with → fusion is blocked and Polº can only be spelled out as an independent lexical item (i.e. as not or n't)

conclusion: the derivation in (48)-(53) is spelled out as (54); the example in (55) can—in the intended reading—not be derived by our system

(54) Quentin Tarantino can’t <offer (any) help>. (¬ > ◇)
(55) * Quentin Tarantino can <offer no help>. (*¬ > ◇)

derivation of (56):

(56) Q: Who liked no movie?
A: ? Quentin Tarantino did <like no movie>.

step 1: merger of VP

(57)

\[
\begin{aligned}
& \text{VP} \\
& \text{DP} \quad \text{VP} \\
& \text{Q.T.} \quad \text{like} \\
& \text{Dº} \quad \text{NP} \quad \text{movie}
\end{aligned}
\]

step 2: spell-out of VP

(58)

\[
\begin{aligned}
& \text{Q.T.} < \text{like} \quad \text{like} < \text{D} \quad \text{D} < \text{movie} \\
& \text{Q.T.} < \text{D} \quad \text{like} < \text{movie} \\
& \text{Q.T.} < \text{movie}
\end{aligned}
\]
step 3: Pol° merges with DP

(59) \[
\begin{array}{c}
\text{VP} \\
\text{DP} \\
\text{Q.T.}
\end{array}
\quad \begin{array}{c}
\begin{array}{c}
\text{VP} \\
\text{DP} \\
\text{Q.T.}
\end{array}
\quad \begin{array}{c}
\text{PolP}_2
\quad \begin{array}{c}
\text{DP} \\
\text{Q.T.}
\end{array}
\quad \begin{array}{c}
\begin{array}{c}
\text{V}^\circ \\
\text{like}
\end{array}
\quad \begin{array}{c}
\begin{array}{c}
\text{D}^\circ \\
\text{NP}
\end{array}
\quad \begin{array}{c}
\text{movie}
\end{array}
\end{array}
\end{array}
\end{array}
\]

step 4: the fusion requirement of Pol° and D° triggers linearization at this point

(60) The linearization of VP is:
- Q.T. < like
- like < D
- D < movie

(61) The linearization of PolP$_2$ is:
- Pol$^\circ$ < D
- D < movie
- Pol$^\circ$ < movie

step 5: Pol° and D° are adjacent and undergo fusion into no

(62) The linearization of VP is:
- Q.T. < like
- like < no
- no < movie

(63) The linearization of PolP$_2$ is:
- no < movie

(64) \[
\begin{array}{c}
\text{VP} \\
\text{DP} \\
\text{Q.T.}
\end{array}
\quad \begin{array}{c}
\begin{array}{c}
\text{VP} \\
\text{DP} \\
\text{Q.T.}
\end{array}
\quad \begin{array}{c}
\text{PolP}_2
\quad \begin{array}{c}
\text{DP} \\
\text{Q.T.}
\end{array}
\quad \begin{array}{c}
\begin{array}{c}
\text{V}^\circ \\
\text{like}
\end{array}
\quad \begin{array}{c}
\begin{array}{c}
\text{D}^\circ \\
\text{NP}
\end{array}
\quad \begin{array}{c}
\text{movie}
\end{array}
\end{array}
\end{array}
\end{array}
\]

step 6: VP and PolP$_2$ are merged

(65) \[
\begin{array}{c}
\text{TP} \\
\text{DP} \\
\text{Q.T.}
\end{array}
\quad \begin{array}{c}
\text{VP} \\
\text{DP} \\
\text{Q.T.}
\end{array}
\quad \begin{array}{c}
\text{PolP}_2
\quad \begin{array}{c}
\text{DP} \\
\text{Q.T.}
\end{array}
\quad \begin{array}{c}
\begin{array}{c}
\text{V}^\circ \\
\text{like}
\end{array}
\quad \begin{array}{c}
\begin{array}{c}
\text{D}^\circ \\
\text{NP}
\end{array}
\quad \begin{array}{c}
\text{movie}
\end{array}
\end{array}
\end{array}
\end{array}
\]

step 7: T$^\circ$ attracts the subject and triggers deletion of its complement

(66) The linearization of PolP$_2$ is:
- Q.T. < like
- like < no
- no < movie
- Q.T. < movie

(67) The linearization of PolP$_2$ is:
- Q.T. < like
- like < no
- no < movie
- Q.T. < movie
step 8: the rest of the structure is merged (PolP, C, etc.) and the derivation is spelled out as (67)

(67) ? Quentin Tarantino did <like no movie>.

collection: if fusion takes place prior to ellipsis (i.e. if Dº merges with Polº rather than Polº), the derivation converges and the VP-ellipsis site can contain an object-NI

3.3 Returning to generalization #1: clausal vs. verbal ellipsis

recall:

Generalization #1: The Clausal/Verbal-Generalization
while in clausal ellipsis any can antecede the ellipsis of no, in verbal ellipsis this switch is disallowed

clausal ellipsis

(69) Q: Which song didn't any judge always vote for?
 A: Katie’s song <no judge always voted for>.

verbal ellipsis

(70) Q: Who didn’t like any movie?
 A: * Quentin Tarantino did <like no movie>.

general idea:

clausal ellipsis: the ellipsis site properly contains both PolP1 and PolP2
→ fusion always precedes ellipsis
→ negative indefinites are allowed regardless of whether the indefinite merges with Polº or Polº

verbal ellipsis: the ellipsis site only properly contains PolP2, not PolP1
→ only fusion with Polº precedes ellipsis
→ negative indefinites are allowed only if they merge with Polº (i.e. if they scope below Tº)

analysis of (70):

1. the contracted negation (i.e. n’) of the antecedent is the spell-out of Polº (cf. Cormack & Smith 2002)

(71) [CP Who [TP didn’t [TP Tº [TP <any movie>]]]]

2. Scope Parallelism requires that the negation in the ellipsis site also be of the Polº-type

3. Ellipsis of PolP blocks fusion of Polº and Dº and the example in (70) cannot be derived

Aside
This line of reasoning suggests that if any were licensed by Polº, any should be able to antecede the ellipsis of as even in VP-ellipsis contexts. A relevant example would be the one in (i).

(i) [context: There’s an eating contest and both John and Mary want to end last in the contest. Peter and Julie are discussing this.]
 Peter: So can John forfeit the game?
 Julie: Well, he COULD not eat anything, I guess.
 Peter: But then, Mary could <eat nothing> too.
The problem with these kinds of examples, though, is that there is no way of telling if the ellipsis site contains a (fused) negative indefinite or an NPI licensed by Polº.

analysis of (69):

1. the negative indefinite in subject position fuses with a Polº-head (presumably Polº given that negation outscopes always)

2. ellipsis of the complement of Cº (i.e. PolP1 or some higher projection) yields the fragment in (69)

conclusion: an ellipsis site can contain negative indefinites only if it properly contains the polarity head responsible for creating the indefinite; for clausal ellipses this is always the case, for verbal ellipses this only holds for the lower polarity projection
4 Broader implications:
Elided subject NPIs constitute no new argument for EPP-violation-repair

claim: clausal ellipsis suspends the Extended Projection Principle (EPP), i.e. the requirement that subjects raise to specTP (cf. Den Dikken et al. 2000; Merchant 2001; Van Craenenbroeck & Den Dikken 2006; Van Craenenbroeck 2010)

(72) A biography of one of the Marx brothers is going to appear this year.
Guess \([_{v} \text{ which (Marx brother)}] < [_{v} \text{ going to appear [a biography of \(z \)] this year.}] >] \) (Merchant 2001:187)

question: do subject NPIs in fragments and embedded sluicing constitute a new (fourth) argument for this claim?

answer: no, given that \(any \) can antecede the ellipsis of \(no \) under clausal ellipsis, there is no way of telling if the underlying structure for (71) is (72) or (73)

(73) [context: the TV show American Idol]
Q: Which song didn’t anyone like?
 b. Katie’s song. Guess why!

(74) a. \([_{v} \text{ Katie’s song} \text{ [c} \text{ C’} < [_{v} \text{ didn’t anyone like [t \text{ [r \text{ did anyone like Katie’s song] [\([_{v} \text{]}] >] }]} \text{]}] >]] \)
 b. Guess \([_{v} \text{ why} \text{ [c} \text{ C’} < [_{v} \text{ didn’t anyone like [t \text{ [r \text{ did anyone like Katie’s song] [\([_{v} \text{]}] >] }]} \text{]}] >]] \)

(75) a. \([_{v} \text{ Katie’s song} \text{ [c} \text{ C’} < [_{v} \text{ t [r \text{ didn’t anyone like [t \text{ [r \text{ did anyone like Katie’s song] [\([_{v} \text{]}] >] }]} \text{]}] >] }]} \)
 b. Guess \([_{v} \text{ why} \text{ [c} \text{ C’} < [_{v} \text{ t [r \text{ did anyone like Katie’s song] [\([_{v} \text{]}] >] }]} \text{]}] >]] \)

5 Summary and conclusions

5.1 Summary

• The Clausal/Verbal-Generalization
 While in clausal ellipsis \(any \) can antecede the ellipsis of \(no \), in verbal ellipsis this switch is disallowed.

• The VPE/NI-Generalization
 A negative indefinite in object position cannot scope out of a VP-ellipsis site.

• Negative indefinites do not undergo QR or Agree/feature checking, but are the result of fusion with a Polº-head.

• Fusion between Polº and Dº comes about under multidominance.

• Ellipsis can block this kind of fusion.

5.2 Implications and prospects

• Subject NPIs do not provide conclusive evidence that clausal ellipsis suspends the EPP.

• The facts discussed here fit into a broader set of distinctions between ‘high’ and ‘low’ ellipses. Clausal ellipsis contains two members of a grammatical dependency, whereas verbal ellipsis only contains one, leading to differences in grammaticality (cf. Merchant 2007, 2011).

• Our theory predicts there is no overt NEG-shift. This seems corroborated by the fact that many proposed instances of NEG-shift are parasitic on independently attested movement operations, e.g. scrambling in continental West-Germanic (Haegeman 1995) and object shift in Scandinavian (Svenonius 2002). See Temmerman (2012:Ch.6.2.2) for some discussion.

• How does the fusion operation described here relate to existing (DM and non-DM) accounts of Fusion (cf. Halle & Marantz 1993; Embick & Noyer 2001; Kandybowicz 2006; Parrott 2006; Radkevich 2010)? See Temmerman (2012:Ch.3) for discussion.

• How do negative indefinite formation and QR interact, given that both of these operations require Dº to fuse with a higher functional head?

• Why does VPE not block QR, given that QR requires Dº to fuse with a higher functional head Qº? See Temmerman (2012:Ch.5) for an analysis.
References

Negative indefinites are the result of remerge and fusion.

