Quantifying dialect Dutch verb clusters

Jeroen van Craenenbroeck

KU Leuven/CRISPP

SyHD-workshop
Dialect syntax – the state of the art
December 5–6, 2014
This talk in one slide

Introduction

A dialectometric analysis

Reverse dialectometry

Conclusion

References

- main topic: interaction between formal-theoretical and quantitative-statistical linguistics
- starting point: the massive amount of variation attested in Dutch verb clusters necessitates a collaboration between formal and quantitative approaches
- traditional dialectometry measures (dis)similarities between dialect locations based on their linguistic profile
- reverse dialectometry measures (dis)similarities between linguistic constructions based on their geographical spread and maps these results against formal-theoretical parameters
- result: a method that can detect and identify grammatical parameters in a large and highly varied data set
This talk in one slide

• **main topic:** interaction between formal-theoretical and quantitative-statistical linguistics
This talk in one slide

- **main topic:** interaction between formal-theoretical and quantitative-statistical linguistics
- **starting point:** the massive amount of variation attested in Dutch verb clusters necessitates a collaboration between formal and quantitative approaches
This talk in one slide

- **main topic:** interaction between formal-theoretical and quantitative-statistical linguistics

- **starting point:** the massive amount of variation attested in Dutch verb clusters necessitates a collaboration between formal and quantitative approaches

- **traditional dialectometry** measures (dis)similarities between dialect locations based on their linguistic profile
This talk in one slide

- **main topic:** interaction between formal-theoretical and quantitative-statistical linguistics
- **starting point:** the massive amount of variation attested in Dutch verb clusters necessitates a collaboration between formal and quantitative approaches
- **traditional dialectometry** measures (dis)similarities between dialect locations based on their linguistic profile
- **reverse dialectometry** measures (dis)similarities between *linguistic constructions* based on their geographical spread and maps these results against formal-theoretical parameters
This talk in one slide

- **main topic**: interaction between formal-theoretical and quantitative-statistical linguistics
- **starting point**: the massive amount of variation attested in Dutch verb clusters necessitates a collaboration between formal and quantitative approaches
- **traditional dialectometry** measures (dis)similarities between dialect locations based on their linguistic profile
- **reverse dialectometry** measures (dis)similarities between *linguistic constructions* based on their geographical spread and maps these results against formal-theoretical parameters
- **result**: a method that can detect and identify grammatical parameters in a large and highly varied data set
Introduction: variation in verb clusters
Introduction: variation in verb clusters

- in Dutch (like in many Germanic languages) verbs tend to group together at the right edge of the (embedded) clause and show variability in word order:
Introduction: variation in verb clusters

- In Dutch (like in many Germanic languages) verbs tend to group together at the right edge of the (embedded) clause and show variability in word order:

 (1) dat hij gisteren tijdens de les gelachen heeft.
 that he yesterday during the class laughed has
 ‘that he laughed yesterday during class.’

 (2) dat hij gisteren tijdens de les heeft gelachen.
 that he yesterday during the class had laughed
 ‘that he laughed yesterday during class.’
Introduction: variation in verb clusters

- in Dutch (like in many Germanic languages) verbs tend to group together at the right edge of the (embedded) clause and show variability in word order:

(1) dat hij gisteren tijdens de les gelachen heeft.
 that he yesterday during the class laughed has
 ‘that he laughed yesterday during class.’

(2) dat hij gisteren tijdens de les heeft gelachen.
 that he yesterday during the class had laughed
 ‘that he laughed yesterday during class.’

- this freedom in word order is a source of massive interdialectal variation
e.g. the SAND-project:
• e.g. the SAND-project:
• e.g. the SAND-project:
 • dialect interviews in 267 dialect locations in Belgium, France, and the Netherlands
e.g. the SAND-project:
- dialect interviews in 267 dialect locations in Belgium, France, and the Netherlands
- the SAND-questionnaire contained eight questions on word order in verb clusters:
• e.g. the SAND-project:
 • dialect interviews in 267 dialect locations in Belgium, France, and the Netherlands

• the SAND-questionnaire contained eight questions on word order in verb clusters:
 • three two-verb clusters of the form AUXILIARY-PARTICIPLE
• e.g. the SAND-project:
 • dialect interviews in 267 dialect locations in Belgium, France, and the Netherlands

• the SAND-questionnaire contained eight questions on word order in verb clusters:
 • three two-verb clusters of the form AUXILIARY-PARTICIPLE
 • one two-verb cluster of the form MODAL-INFINITIVE
• e.g. the SAND-project:
 • dialect interviews in 267 dialect locations in Belgium, France, and the Netherlands
• the SAND-questionnaire contained eight questions on word order in verb clusters:
 • three two-verb clusters of the form AUXILIARY-PARTICIPLE
 • one two-verb cluster of the form MODAL-INFINITIVE
 • four three-verb clusters:
e.g. the SAND-project:
 - dialect interviews in 267 dialect locations in Belgium, France, and the Netherlands

the SAND-questionnaire contained eight questions on word order in verb clusters:
 - three two-verb clusters of the form AUXILIARY-PARTICIPLE
 - one two-verb cluster of the form MODAL-INFINITIVE
 - four three-verb clusters:
 - MODAL-MODAL-INFINITIVE
e.g. the SAND-project:
- dialect interviews in 267 dialect locations in Belgium, France, and the Netherlands

the SAND-questionnaire contained eight questions on word order in verb clusters:
- three two-verb clusters of the form **AUXILIARY-PARTICIPLE**
- one two-verb cluster of the form **MODAL-INFINITIVE**
- four three-verb clusters:
 - **MODAL-MODAL-INFINITIVE**
 - **MODAL-AUXILIARY-PARTICIPLE**
• e.g. the SAND-project:
 • dialect interviews in 267 dialect locations in Belgium, France, and the Netherlands

• the SAND-questionnaire contained eight questions on word order in verb clusters:
 • three two-verb clusters of the form **AUXILIARY-PARTICIPLE**
 • one two-verb cluster of the form **MODAL-INFINITIVE**
 • four three-verb clusters:
 • **MODAL-MODAL-INFINITIVE**
 • **MODAL-AUXILIARY-PARTICIPLE**
 • **AUXILIARY-AUXILIARY-INFINITIVE**
• e.g. the SAND-project:
 • dialect interviews in 267 dialect locations in Belgium, France, and the Netherlands
• the SAND-questionnaire contained eight questions on word order in verb clusters:
 • three two-verb clusters of the form AUXILIARY-PARTICIPLE
 • one two-verb cluster of the form MODAL-INFINITIVE
 • four three-verb clusters:
 • MODAL-MODAL-INFINITIVE
 • MODAL-AUXILIARY-PARTICIPLE
 • AUXILIARY-AUXILIARY-INFINITIVE
 • AUXILIARY-MODAL-INFINITIVE
• e.g. the SAND-project:
 • dialect interviews in 267 dialect locations in Belgium, France, and the Netherlands

• the SAND-questionnaire contained eight questions on word order in verb clusters:
 • three two-verb clusters of the form AUXILIARY-PARTICIPLE
 • one two-verb cluster of the form MODAL-INFINITIVE
 • four three-verb clusters:
 • MODAL-MODAL-INFINITIVE
 • MODAL-AUXILIARY-PARTICIPLE
 • AUXILIARY-AUXILIARY-INFINITIVE
 • AUXILIARY-MODAL-INFINITIVE
 • for a total of 31 cluster orders
• e.g. the SAND-project:
 • dialect interviews in 267 dialect locations in Belgium, France, and the Netherlands

• the SAND-questionnaire contained eight questions on word order in verb clusters:
 • three two-verb clusters of the form AUXILIARY-PARTICIPLE
 • one two-verb cluster of the form MODAL-INFINITIVE
 • four three-verb clusters:
 • MODAL-MODAL-INFINITIVE
 • MODAL-AUXILIARY-PARTICIPLE
 • AUXILIARY-AUXILIARY-INFINITIVE
 • AUXILIARY-MODAL-INFINITIVE

• for a total of 31 cluster orders

• if we map, for each of the 267 SAND-dialects, which dialect has which combination of cluster orders, we find 137 different combinations of verb cluster orders
this state of affairs raises fundamental questions for parameter theory:
• this state of affairs raises fundamental questions for parameter theory:

 • are there really grammatical (micro)parameters distinguishing between all of these 137 dialect types?
• this state of affairs raises fundamental questions for parameter theory:
 • are there really grammatical (micro)parameters distinguishing between all of these 137 dialect types?
 • if there are, what are they and how can we detect them?
• this state of affairs raises fundamental questions for parameter theory:
 • are there really grammatical (micro)parameters distinguishing between all of these 137 dialect types?
 • if there are, what are they and how can we detect them?
 • more generally, how can we distinguish between the signal and the noise in such large and highly variable datasets?
• this state of affairs raises fundamental questions for parameter theory:
 • are there really grammatical (micro)parameters distinguishing between all of these 137 dialect types?
 • if there are, what are they and how can we detect them?
 • more generally, how can we distinguish between the signal and the noise in such large and highly variable datasets?

• **in this talk** I use statistical methods to detect and identify grammatical microparameters regulating (a large part of) the variation found in Dutch verb clusters
A dialectometric analysis

- **dialectometry** is a subdiscipline of linguistics that uses computational and quantitative techniques in dialectology (Nerbonne and Kretzschmar Jr., 2013)
A dialectometric analysis

- **dialectometry** is a subdiscipline of linguistics that uses computational and quantitative techniques in dialectology (Nerbonne and Kretzschmar Jr., 2013)
- A typical dialectometric analysis measures similarities and differences between dialect locations based on their linguistic profile
A dialectometric analysis

- **dialectometry** is a subdiscipline of linguistics that uses computational and quantitative techniques in dialectology (Nerbonne and Kretzschmar Jr., 2013)
- a typical dialectometric analysis measures similarities and differences between dialect locations based on their linguistic profile
- starting point: data table with dialects in rows and cluster orders in columns
<table>
<thead>
<tr>
<th>Location</th>
<th>AUX1(be.sg)-PART2</th>
<th>PART2-AUX1(be.sg)</th>
<th>AUX1(have.sg)-PART2</th>
<th>PART2-AUX1(have.sg)</th>
<th>AUX1(have.pl)-PART2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midsland / Midslân</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Lies</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>West-Terschelling</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Oosterend</td>
<td>NA</td>
<td>NA</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Hollum</td>
<td>no</td>
<td>yes</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Schiermonnikoog</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Ferwerd / Ferwert</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Anjum / Eanjum</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Kollum</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Visvliet</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Oosterbierum / Eakijk</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Beetgum / Bitgum</td>
<td>no</td>
<td>yes</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Bergum / Burgum</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Jorwerd / Jorwert</td>
<td>no</td>
<td>yes</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Bakkeveen / Bakkeveen</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Waskemeer / De Waskemee</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Kloosterburen</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Warffum</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Leermens</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Groningen</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Nieuw-Scheemda</td>
<td>NA</td>
<td>NA</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Langelo</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>
• step 1: convert the data table into a 267×267 (symmetric) distance matrix, whereby for each pair of locations a distance between them is calculated based on the linguistic features they share
A dialectometric analysis

<table>
<thead>
<tr>
<th></th>
<th>Midsland</th>
<th>Lies</th>
<th>West-Terschelling</th>
<th>Oosterend</th>
<th>Hollum</th>
<th>Schiermonnik</th>
<th>Ferwerd</th>
<th>Anjum / Eanjum</th>
<th>Kollum</th>
<th>Visvliet</th>
<th>Oosterbierum</th>
<th>Beetgum</th>
<th>Bergum / Burgh</th>
<th>Jorwerd / Jorwerd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midland / Midland</td>
<td>0,000</td>
<td>0,500</td>
<td>0,333</td>
<td>0,706</td>
<td>0,250</td>
<td>0,647</td>
<td>0,357</td>
<td>0,250</td>
<td>0,611</td>
<td>0,650</td>
<td>0,533</td>
<td>0,545</td>
<td>0,500</td>
<td>0,692</td>
</tr>
<tr>
<td>lies</td>
<td>0,500</td>
<td>0,000</td>
<td>0,444</td>
<td>0,750</td>
<td>0,588</td>
<td>0,375</td>
<td>0,471</td>
<td>0,563</td>
<td>0,444</td>
<td>0,444</td>
<td>0,632</td>
<td>0,714</td>
<td>0,500</td>
<td>0,676</td>
</tr>
<tr>
<td>West-Terschelling</td>
<td>0,333</td>
<td>0,444</td>
<td>0,000</td>
<td>0,789</td>
<td>0,429</td>
<td>0,667</td>
<td>0,286</td>
<td>0,429</td>
<td>0,632</td>
<td>0,600</td>
<td>0,500</td>
<td>0,500</td>
<td>0,429</td>
<td>0,583</td>
</tr>
<tr>
<td>Oosterend</td>
<td>0,706</td>
<td>0,750</td>
<td>0,789</td>
<td>0,000</td>
<td>0,706</td>
<td>0,765</td>
<td>0,737</td>
<td>0,538</td>
<td>0,563</td>
<td>0,600</td>
<td>0,600</td>
<td>0,727</td>
<td>0,813</td>
<td>0,846</td>
</tr>
<tr>
<td>Hollum</td>
<td>0,250</td>
<td>0,588</td>
<td>0,429</td>
<td>0,706</td>
<td>0,000</td>
<td>0,667</td>
<td>0,167</td>
<td>0,000</td>
<td>0,625</td>
<td>0,714</td>
<td>0,462</td>
<td>0,500</td>
<td>0,500</td>
<td>0,545</td>
</tr>
<tr>
<td>Schiermonnik</td>
<td>0,647</td>
<td>0,375</td>
<td>0,667</td>
<td>0,765</td>
<td>0,667</td>
<td>0,000</td>
<td>0,625</td>
<td>0,400</td>
<td>0,556</td>
<td>0,706</td>
<td>0,571</td>
<td>0,500</td>
<td>0,571</td>
<td>0,600</td>
</tr>
<tr>
<td>Ferwerd / Ferwerd</td>
<td>0,357</td>
<td>0,471</td>
<td>0,286</td>
<td>0,737</td>
<td>0,167</td>
<td>0,625</td>
<td>0,000</td>
<td>0,182</td>
<td>0,588</td>
<td>0,682</td>
<td>0,308</td>
<td>0,333</td>
<td>0,333</td>
<td>0,400</td>
</tr>
<tr>
<td>Anjum / Eanjum</td>
<td>0,250</td>
<td>0,563</td>
<td>0,429</td>
<td>0,538</td>
<td>0,000</td>
<td>0,667</td>
<td>0,182</td>
<td>0,000</td>
<td>0,571</td>
<td>0,625</td>
<td>0,417</td>
<td>0,556</td>
<td>0,500</td>
<td>0,600</td>
</tr>
<tr>
<td>Kollum</td>
<td>0,611</td>
<td>0,444</td>
<td>0,632</td>
<td>0,583</td>
<td>0,625</td>
<td>0,400</td>
<td>0,588</td>
<td>0,571</td>
<td>0,000</td>
<td>0,353</td>
<td>0,625</td>
<td>0,643</td>
<td>0,429</td>
<td>0,571</td>
</tr>
<tr>
<td>Visvliet</td>
<td>0,650</td>
<td>0,444</td>
<td>0,600</td>
<td>0,600</td>
<td>0,714</td>
<td>0,556</td>
<td>0,682</td>
<td>0,625</td>
<td>0,353</td>
<td>0,000</td>
<td>0,588</td>
<td>0,500</td>
<td>0,667</td>
<td>0,692</td>
</tr>
<tr>
<td>Oosterbierum</td>
<td>0,533</td>
<td>0,632</td>
<td>0,500</td>
<td>0,600</td>
<td>0,462</td>
<td>0,706</td>
<td>0,308</td>
<td>0,417</td>
<td>0,625</td>
<td>0,588</td>
<td>0,167</td>
<td>0,000</td>
<td>0,500</td>
<td>0,455</td>
</tr>
<tr>
<td>Beetgum / Beetgum</td>
<td>0,545</td>
<td>0,714</td>
<td>0,500</td>
<td>0,727</td>
<td>0,500</td>
<td>0,750</td>
<td>0,333</td>
<td>0,556</td>
<td>0,643</td>
<td>0,500</td>
<td>0,167</td>
<td>0,000</td>
<td>0,500</td>
<td>0,455</td>
</tr>
<tr>
<td>Bergum / Burgh</td>
<td>0,500</td>
<td>0,500</td>
<td>0,429</td>
<td>0,813</td>
<td>0,500</td>
<td>0,571</td>
<td>0,333</td>
<td>0,500</td>
<td>0,429</td>
<td>0,667</td>
<td>0,571</td>
<td>0,500</td>
<td>0,000</td>
<td>0,222</td>
</tr>
<tr>
<td>Jorwerd / Jorwerd</td>
<td>0,692</td>
<td>0,667</td>
<td>0,583</td>
<td>0,846</td>
<td>0,545</td>
<td>0,667</td>
<td>0,400</td>
<td>0,600</td>
<td>0,571</td>
<td>0,692</td>
<td>0,500</td>
<td>0,455</td>
<td>0,222</td>
<td>0,000</td>
</tr>
<tr>
<td>Bakkeveen / Bakkeveen</td>
<td>0,400</td>
<td>0,500</td>
<td>0,438</td>
<td>0,706</td>
<td>0,385</td>
<td>0,563</td>
<td>0,357</td>
<td>0,385</td>
<td>0,438</td>
<td>0,579</td>
<td>0,533</td>
<td>0,545</td>
<td>0,385</td>
<td>0,583</td>
</tr>
<tr>
<td>Waskemeer / Waskemeer</td>
<td>0,438</td>
<td>0,526</td>
<td>0,556</td>
<td>0,818</td>
<td>0,500</td>
<td>0,588</td>
<td>0,471</td>
<td>0,533</td>
<td>0,471</td>
<td>0,652</td>
<td>0,588</td>
<td>0,667</td>
<td>0,429</td>
<td>0,500</td>
</tr>
<tr>
<td>Kloosterburen</td>
<td>0,500</td>
<td>0,412</td>
<td>0,611</td>
<td>0,810</td>
<td>0,563</td>
<td>0,357</td>
<td>0,529</td>
<td>0,600</td>
<td>0,333</td>
<td>0,636</td>
<td>0,706</td>
<td>0,667</td>
<td>0,385</td>
<td>0,583</td>
</tr>
<tr>
<td>Warffum</td>
<td>0,563</td>
<td>0,438</td>
<td>0,667</td>
<td>0,737</td>
<td>0,625</td>
<td>0,429</td>
<td>0,588</td>
<td>0,943</td>
<td>0,400</td>
<td>0,652</td>
<td>0,600</td>
<td>0,636</td>
<td>0,571</td>
<td>0,750</td>
</tr>
<tr>
<td>Leermens</td>
<td>0,667</td>
<td>0,652</td>
<td>0,739</td>
<td>0,550</td>
<td>0,773</td>
<td>0,650</td>
<td>0,739</td>
<td>0,722</td>
<td>0,389</td>
<td>0,455</td>
<td>0,667</td>
<td>0,571</td>
<td>0,684</td>
<td>0,755</td>
</tr>
<tr>
<td>Groningen</td>
<td>0,714</td>
<td>0,682</td>
<td>0,714</td>
<td>0,636</td>
<td>0,783</td>
<td>0,762</td>
<td>0,800</td>
<td>0,778</td>
<td>0,471</td>
<td>0,476</td>
<td>0,684</td>
<td>0,714</td>
<td>0,737</td>
<td>0,786</td>
</tr>
<tr>
<td>Nieuw-Scheemuiden</td>
<td>0,650</td>
<td>0,682</td>
<td>0,650</td>
<td>0,652</td>
<td>0,773</td>
<td>0,762</td>
<td>0,739</td>
<td>0,722</td>
<td>0,556</td>
<td>0,368</td>
<td>0,647</td>
<td>0,615</td>
<td>0,667</td>
<td>0,786</td>
</tr>
<tr>
<td>Langelo</td>
<td>0,727</td>
<td>0,524</td>
<td>0,739</td>
<td>0,652</td>
<td>0,792</td>
<td>0,650</td>
<td>0,760</td>
<td>0,647</td>
<td>0,550</td>
<td>0,500</td>
<td>0,700</td>
<td>0,824</td>
<td>0,810</td>
<td>0,950</td>
</tr>
</tbody>
</table>
• step 2: reduce this 267-dimensional matrix to a two- or three-dimensional one, so that it can easily be visualized
This talk in one slide

Introduction

A dialectometric analysis

Reverse dialectometry

Conclusion

References
• step 3: project back onto a geographical map
• shortcomings of this approach for my current purposes:
shortcomings of this approach for my current purposes:

1. the linguistic constructions themselves play only an indirect role in the outcome of the analysis: we can see when two dialects differ, but we don’t see which cluster orders are responsible for this difference or how they cluster or correlate
• shortcomings of this approach for my current purposes:
 1. the linguistic constructions themselves play only an indirect role in the outcome of the analysis: we can see when two dialects differ, but we don’t see which cluster orders are responsible for this difference or how they cluster or correlate
 2. there is no link between the data that feed into the quantitative analysis and the formal theoretical literature on verb clusters
Reverse dialectometry

- proposal: let’s treat cluster orders as *individuals* rather than variables, i.e. instead of calculating differences between dialect locations, we measure differences between linguistic constructions
Reverse dialectometry

- **proposal**: let’s treat cluster orders as *individuals* rather than variables, i.e. instead of calculating differences between dialect locations, we measure differences between linguistic constructions

- starting point: a data table with cluster orders as rows and dialect locations as columns
<table>
<thead>
<tr>
<th></th>
<th>Midsland</th>
<th>Lies</th>
<th>West.Tersch</th>
<th>Osterend</th>
<th>Hollum</th>
<th>Schiermonri</th>
<th>Ferwerd</th>
<th>Anjum</th>
<th>Kollum</th>
<th>Visuiliet</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUX1(be.sg)-PART2</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>NA</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>PART2-AUX1(be.sg)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>NA</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>AUX1(have.sg)-PART2</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>PART2-AUX1(have.sg)</td>
<td>yes</td>
</tr>
<tr>
<td>AUX1(have.pl)-PART2</td>
<td>no</td>
</tr>
<tr>
<td>PART2-AUX1(have.pl)</td>
<td>yes</td>
</tr>
<tr>
<td>MOD1(sg)-INF2</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>INF2-MOD1(sg)</td>
<td>yes</td>
</tr>
<tr>
<td>MOD2-INF3-MOD1(sg)</td>
<td>no</td>
</tr>
<tr>
<td>MOD1(sg)-MOD2-INF3</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>MOD1(sg)-INF3-MOD2</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>INF3-MOD2-MOD1(sg)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>INF3-MOD1(sg)-MOD2</td>
<td>no</td>
</tr>
<tr>
<td>MOD1(sg)-AUX2(have)-PART3</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>NA</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>MOD1(sg)-PART3-AUX2(have)</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>NA</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>PART3-MOD1(sg)-AUX2(have)</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>NA</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>PART3-AUX2(have)-MOD1(sg)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>AUX1(be.sg)-AUX2(go)-INF3</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>NA</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>AUX1(be.sg)-INF3-AUX2(go)</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>NA</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>AUX2(go)-AUX1(be.sg)-INF3</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>NA</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>AUX2(go)-INF3-AUX1(be.sg)</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>NA</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>INF3-AUX1(be.sg)-AUX2(go)</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>NA</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>INF3-AUX2(go)-AUX1(be.sg)</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>NA</td>
<td>no</td>
</tr>
<tr>
<td>AUX1(have.sg)-MOD2(inf)-INF3</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>AUX1(have.sg)-INF3-MOD2(part)</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>AUX1(have.sg)-INF3-MOD2(inf)</td>
<td>no</td>
</tr>
<tr>
<td>AUX1(have.sg)-INF3-MOD2(part)</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>MOD2(inf)-INF3-AUX1(have.sg)</td>
<td>no</td>
</tr>
<tr>
<td>INF3-AUX1(have.sg)-MOD2(inf)</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>INF3-AUX1(have.sg)-MOD2(part)</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>INF3-MOD2(part)-AUX1(have.sg)</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>INF3-MOD2(inf)-AUX1(have.sg)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
</tbody>
</table>
• transform to a distance matrix and reduce its dimensionality
• **note:** each point now represents a particular cluster order and closeness of points indicates how alike two verb cluster orders are based on their geographical spread
• **note:** each point now represents a particular cluster order and closeness of points indicates how alike two verb cluster orders are based on their geographical spread

• if this likeness is the result of grammatical microparameters, then verb cluster orders that are ‘closeby’ should be the result of the same parameter setting, i.e. parameters create **natural classes** of verb cluster orders
• **note:** each point now represents a particular cluster order and closeness of points indicates how alike two verb cluster orders are based on their geographical spread

• if this likeness is the result of grammatical microparameters, then verb cluster orders that are ‘closeby’ should be the result of the same parameter setting, i.e. parameters create **natural classes** of verb cluster orders

• in order to find those parameters, we can also encode the cluster orders in terms of their theoretical linguistic analyses
• e.g. Barbiers (2005)’s analysis of verb clusters: head-initial base structure, all movements are VP-intrapositions, movement is feature-driven and can pied-pipe VPs other than the one undergoing feature checking
e.g. Barbiers (2005)’s analysis of verb clusters: head-initial base structure, all movements are VP-intrapositions, movement is feature-driven and can pied-pipe VPs other than the one undergoing feature checking

⇒ this account can be decomposed into the following microparameters:
• e.g. Barbiers (2005)’s analysis of verb clusters: head-initial base structure, all movements are VP-intrapositions, movement is feature-driven and can pied-pipe VPs other than the one undergoing feature checking

⇒ this account can be decomposed into the following microparameters:
 • [±base-generation]: can the order be base-generated?
• e.g. Barbiers (2005)’s analysis of verb clusters: head-initial base structure, all movements are VP-intrapositions, movement is feature-driven and can pied-pipe VPs other than the one undergoing feature checking
⇒ this account can be decomposed into the following microparameters:
 • [±base-generation]: can the order be base-generated?
 • [±movement]: can the order be derived via movement?
• e.g. Barbiers (2005)’s analysis of verb clusters: head-initial base structure, all movements are VP-intrapositions, movement is feature-driven and can pied-pipe VPs other than the one undergoing feature checking
⇒ this account can be decomposed into the following microparameters:
 • [±base-generation]: can the order be base-generated?
 • [±movement]: can the order be derived via movement?
 • [±pied-piping]: does the derivation involve pied-piping?
• e.g. Barbiers (2005)’s analysis of verb clusters: head-initial base structure, all movements are VP-intrapositions, movement is feature-driven and can pied-pipe VPs other than the one undergoing feature checking

⇒ this account can be decomposed into the following microparameters:

• [±base-generation]: can the order be base-generated?
• [±movement]: can the order be derived via movement?
• [±pied-piping]: does the derivation involve pied-piping?
• [±feature-checking violation]: does the order involve a feature checking violation?
• e.g. Barbiers (2005)’s analysis of verb clusters: head-initial base structure, all movements are VP-intrapositions, movement is feature-driven and can pied-pipe VPs other than the one undergoing feature checking

⇒ this account can be decomposed into the following microparameters:

 • [±base-generation]: can the order be base-generated?
 • [±movement]: can the order be derived via movement?
 • [±pied-piping]: does the derivation involve pied-piping?
 • [±feature-checking violation]: does the order involve a feature checking violation?

• and our 31 cluster orders can be encoded in terms of these microparameters
<table>
<thead>
<tr>
<th></th>
<th>Barbiers-base-generation</th>
<th>Barbiers-movement</th>
<th>Barbiers-spec-pied-piping</th>
<th>Barbiers-feature.checking-failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUX1(be.sg)-PART2</td>
<td>yesBase</td>
<td>noMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>PART2-AUX1(be.sg)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>AUX1(have.sg)-PART2</td>
<td>yesBase</td>
<td>noMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>PART2-AUX1(have.sg)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>AUX1(have.pl)-PART2</td>
<td>yesBase</td>
<td>noMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>PART2-AUX1(have.pl)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>MOD1(sg)-INF2</td>
<td>yesBase</td>
<td>noMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>INF2-MOD1(sg)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>MOD2-INF3-MOD1(sg)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>yesFeatCheckFail</td>
</tr>
<tr>
<td>MOD1(sg)-MOD2-INF3</td>
<td>yesBase</td>
<td>noMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>MOD1(sg)-INF3-MOD2</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>INF3-MOD2-MOD1(sg)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>INF3-MOD1(sg)-MOD2</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>MOD1(sg)-AUX2(have)-PART3</td>
<td>yesBase</td>
<td>noMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>MOD1(sg)-PART3-AUX2(have)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>PART3-MOD1(sg)-AUX2(have)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>PART3-AUX2(have)-MOD1(sg)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>AUX1(be.sg)-AUX2(go)-INF3</td>
<td>yesBase</td>
<td>noMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>AUX1(be.sg)-INF3-AUX2(go)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>AUX2(go)-AUX1(be.sg)-INF3</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>AUX2(go)-INF3-AUX1(be.sg)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>INF3-AUX1(be.sg)-AUX2(go)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>yesFeatCheckFail</td>
</tr>
<tr>
<td>INF3-AUX2(go)-AUX1(be.sg)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>AUX1(have.sg)-MOD2(inf)-INF3</td>
<td>yesBase</td>
<td>noMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>AUX1(have.sg)-INF3-MOD2(part)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>AUX1(have.sg)-INF3-MOD2(inf)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>MOD2(inf)-INF3-AUX1(have.sg)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>INF3-AUX1(have.sg)-MOD2(inf)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>yesFeatCheckFail</td>
</tr>
<tr>
<td>INF3-AUX1(have.sg)-MOD2(part)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>yesFeatCheckFail</td>
</tr>
<tr>
<td>INF3-MOD2(part)-AUX1(have.sg)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
<tr>
<td>INF3-MOD2(inf)-AUX1(have.sg)</td>
<td>noBase</td>
<td>yesMvt</td>
<td>noPiedP</td>
<td>noFeatCheckFail</td>
</tr>
</tbody>
</table>
• **in total**: 70 additional variables distilled from the theoretical literature on verb clusters:
• **in total:** 70 additional variables distilled from the theoretical literature on verb clusters:
• **in total:** 70 additional variables distilled from the theoretical literature on verb clusters:

 • the analyses of Barbiers (2005), Barbiers and Bennis (2010), Abels (2011), Haegeman and Riemsdijk (1986), Bader (2012), and Schmid and Vogel (2004)

 • a head-initial head movement analysis, a head-final head movement analysis, a head-initial XP-movement analysis, a head-final XP-movement analysis (all based on Wurmbrand (2005))
• **in total:** 70 additional variables distilled from the theoretical literature on verb clusters:

 - a head-initial head movement analysis, a head-final head movement analysis, a head-initial XP-movement analysis, a head-final XP-movement analysis (all based on Wurmbrand (2005))

 - 17 additional variables based on the theoretical literature, but not linked to a specific analysis
• **proposal (I):** the number of microparameters responsible for the verb cluster variation = the number of dimensions we reduce our data set to
• **note:** there seems to be a clear cut-off point after the third dimension
• **note:** there seems to be a clear cut-off point after the third dimension

• together, the first three dimensions account for 78.46% of the variation in the SAND verb cluster data
• **note:** there seems to be a clear cut-off point after the third dimension

• together, the first three dimensions account for 78.46% of the variation in the SAND verb cluster data

• this means that roughly 80% of the variation in verb cluster ordering in SAND can be reduced to three microparameters
• **note:** there seems to be a clear cut-off point after the third dimension

• together, the first three dimensions account for 78.46% of the variation in the SAND verb cluster data

• this means that roughly 80% of the variation in verb cluster ordering in SAND can be reduced to three microparameters

• in order to know what those microparameters are, we need to interpret the first three dimensions
• **proposal (I):** the number of microparameters responsible for the verb cluster variation = the number of dimensions we reduce our data set to

• **proposal (II):** the identity of those microparameters = the interpretation of the dimensions
• **proposal (I):** the number of microparameters responsible for the verb cluster variation = the number of dimensions we reduce our data set to

• **proposal (II):** the identity of those microparameters = the interpretation of the dimensions

• the degree of similarity/correlation between a dimension and a linguistic variable can be determined by:
 1. visual inspection of a color-coded map
 2. calculating the squared correlation ratio (η^2): value between 0 and 1 indicating the strength of the link between a dimension and a particular categorical variable; can be interpreted as the percentage of variation on the dimension that can be explained by that categorical variable
Dimension 1

- is related to the position of infinitives and participles *vis-à-vis* their selecting verbs (modals and auxiliaries respectively)
Dimension 1

- is related to the position of infinitives and participles *vis-à-vis* their selecting verbs (modals and auxiliaries respectively)
- more specifically, the variable \texttt{INF_MOD_AUX_PART}:
Dimension 1

• is related to the position of infinitives and participles *vis-à-vis* their selecting verbs (modals and auxiliaries respectively)

• more specifically, the variable **InfMod.AuxPart:**
 • set to ‘no’ when the modal precedes the infinitive (when present) and the participle precedes the auxiliary (when present)
Dimension 1

- is related to the position of infinitives and participles *vis-à-vis* their selecting verbs (modals and auxiliaries respectively)
- more specifically, the variable `InfMod.AuxPart`:
 - set to ‘no’ when the modal precedes the infinitive (when present) and the participle precedes the auxiliary (when present)
 - set to ‘yes’ when at least one of these conditions is not met
Dimension 1

- is related to the position of infinitives and participles *vis-à-vis* their selecting verbs (modals and auxiliaries respectively)
- more specifically, the variable `INF Mod. Aux Part`:
 - set to ‘no’ when the modal precedes the infinitive (when present) and the participle precedes the auxiliary (when present)
 - set to ‘yes’ when at least one of these conditions is not met
- this variable has a η^2 of 0.6142
Dimension 2

• is related to the ‘slope’ of the cluster: ascending or descending
Dimension 2

- is related to the ‘slope’ of the cluster: ascending or descending
- more specifically, the variable `FINAL_DESCENT`:
Dimension 2

- is related to the ‘slope’ of the cluster: ascending or descending
- more specifically, the variable \texttt{FINALDESCENT}:
 - set to ‘yes’ if the cluster ends in a descending order
Dimension 2

- is related to the ‘slope’ of the cluster: ascending or descending
- more specifically, the variable **FINAL_DESCENT**:
 - set to ‘yes’ if the cluster ends in a descending order
 - set to ‘no’ if it ends in an ascending order

\[\eta^2 = 0.382 \]
Dimension 2

• is related to the ‘slope’ of the cluster: ascending or descending
• more specifically, the variable FinalDescent:
 • set to ‘yes’ if the cluster ends in a descending order
 • set to ‘no’ if it ends in an ascending order

<table>
<thead>
<tr>
<th>FinalDescent_yes</th>
<th>FinalDescent_no</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>132</td>
<td>123</td>
</tr>
<tr>
<td>321</td>
<td>312</td>
</tr>
<tr>
<td>231</td>
<td>213</td>
</tr>
</tbody>
</table>
Dimension 2

- is related to the ‘slope’ of the cluster: ascending or descending
- more specifically, the variable FinalDescent:
 - set to ‘yes’ if the cluster ends in a descending order
 - set to ‘no’ if it ends in an ascending order

<table>
<thead>
<tr>
<th>FinalDescent_yes</th>
<th>FinalDescent_no</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>12</td>
</tr>
<tr>
<td>132</td>
<td>123</td>
</tr>
<tr>
<td>321</td>
<td>312</td>
</tr>
<tr>
<td>231</td>
<td>213</td>
</tr>
</tbody>
</table>

- this variable has a η^2 of 0.382
Dimension 3

• is strongly correlated with head-finality
Dimension 3

- is strongly correlated with head-finality
- a variable like HeadFinalBaseOrder that separates strictly head-final orders from all others has a η^2 of 0.686
This talk in one slide

Introduction

A dialectometric analysis

Reverse dialectometry

Conclusion

References
A possible analysis

- based on these three parameters, a rough, parametrized analysis of verb clusters can be constructed:
A possible analysis

- based on these three parameters, a rough, parametrized analysis of verb clusters can be constructed:
 1. a head-final base order
A possible analysis

• based on these three parameters, a rough, parametrized analysis of verb clusters can be constructed:
 1. a head-final base order
 2. which dialects can diverge from or not: [±\textsc{Movement}]
 (dimension 3)
A possible analysis

• based on these three parameters, a rough, parametrized analysis of verb clusters can be constructed:
 1. a head-final base order
 2. which dialects can diverge from or not: \pmMovement (dimension 3)
 3. those that diverge can diverge strongly or not: Economy of Movement (dimension 2)
A possible analysis

- based on these three parameters, a rough, parametrized analysis of verb clusters can be constructed:
 1. a head-final base order
 2. which dialects can diverge from or not: $\pm\text{Movement}$ (dimension 3)
 3. those that diverge can diverge strongly or not: Economy of Movement (dimension 2)
 4. above and beyond all this, a headedness parameter regulates the order of infinitives and participles vis-à-vis their selecting verbs: $\pm\text{ModInf&PartAux}$ (dimension 1)
Conclusion

• roughly 80% of the variation found in Dutch verb cluster orders can be reduced to three grammatical microparameters by applying a statistical analysis to the data
Conclusion

• roughly 80% of the variation found in Dutch verb cluster orders can be reduced to three grammatical microparameters by applying a statistical analysis to the data
• more generally, there is room for fruitful collaboration between formal-theoretical and quantitative-statistical linguistics:
Conclusion

• roughly 80% of the variation found in Dutch verb cluster orders can be reduced to three grammatical microparameters by applying a statistical analysis to the data

• more generally, there is room for fruitful collaboration between formal-theoretical and quantitative-statistical linguistics:
 • the former can guide the interpretation of results from the latter
Conclusion

• roughly 80% of the variation found in Dutch verb cluster orders can be reduced to three grammatical microparameters by applying a statistical analysis to the data

• more generally, there is room for fruitful collaboration between formal-theoretical and quantitative-statistical linguistics:
 • the former can guide the interpretation of results from the latter
 • the latter can help evaluate and test hypotheses of the former
Bonus: headedness

- the technique developed here can shed new light on old verb cluster chestnuts such as headedness:
Bonus: headedness

- the technique developed here can shed new light on old verb cluster chestnuts such as headedness:

<table>
<thead>
<tr>
<th></th>
<th>dimension 1</th>
<th>dimension 2</th>
<th>dimension 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>head-initial</td>
<td>0.126</td>
<td>0.309</td>
<td>0.130</td>
</tr>
<tr>
<td>head-final</td>
<td>0.006</td>
<td>0.101</td>
<td>0.686</td>
</tr>
<tr>
<td>mixed$_1$</td>
<td>0.146</td>
<td>0.039</td>
<td>0.193</td>
</tr>
<tr>
<td>mixed$_2$</td>
<td>0.044</td>
<td>0.027</td>
<td>0.014</td>
</tr>
</tbody>
</table>

(Barbiers and Bennis (2010))

(Abels (2011))
Bonus: headedness

- the technique developed here can shed new light on old verb cluster chestnuts such as headedness:

<table>
<thead>
<tr>
<th></th>
<th>dimension 1</th>
<th>dimension 2</th>
<th>dimension 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>head-initial</td>
<td>0.126</td>
<td>0.309</td>
<td>0.130</td>
</tr>
<tr>
<td>head-final</td>
<td>0.006</td>
<td>0.101</td>
<td>0.686</td>
</tr>
<tr>
<td>mixed _1 (Barbiers and Bennis (2010))</td>
<td>0.146</td>
<td>0.039</td>
<td>0.193</td>
</tr>
<tr>
<td>mixed _2 (Abels (2011))</td>
<td>0.044</td>
<td>0.027</td>
<td>0.014</td>
</tr>
</tbody>
</table>

- basically, any theoretical proposal that predicts certain data patterns to co-occur can be put to the test with this method
References I

References II

