The Syntax of Referring Nominal Expressions

CRISSP, April 1 -April 4, 2008

Hagit Borer

Lecture 1 Introduction

1. The Top-Down Computational Approach (the XS-Model):

1. a. There is a layer of the English vocabulary, call it the Conceptual Array, which consists of grammatically unmarked items (at times called roots, see Marantz, 1997, and referred to below as listemes), which are, in essence, concepts with (partial) phonological labels. Listemes are not associated with grammatical information: no categorially-polarized morphology (derivational or inflectional), no subcategorization, no argument structure information.
b. There is another layer of the English vocabulary, call it the Functional Lexicon, which consists of grammatical formatives. Grammatical formatives come in at least the following shapes:
i. Free morphemes (F-morphs) such as the, three and including clitics (e.g. weak pronouns)
ii. Abstract head feateures ($\langle\boldsymbol{p s t}\rangle$)
iii. So-called derivational morphemes, including categorizing morphology (ation).
Grammatical formatives have a category and project structure, and are specified to occur in specific architectural configurations.
c. Grammatical formatives merge with listemes, effectively making them categorially polarized.
2. "'Twas [A brillig], and the [${ }_{\mathrm{N}}$ [A ${ }_{\mathrm{A}}$ slithy] toves]

Did [vgyre] and [vgimble] in the [$\mathrm{N} w a b e$]:
All [Amimsy] were the [sborogoves],
And the [NP [Amome] raths] [voutgrabe]"
(also possible, but less plausible: [N mome] [[vraths] [noutgrabe])
Jabberwocky, Lewis Carol, Through the Looking Glass
3. a. This is too little carpet for the money
b. There are three wines in the cellar
c. Cat came (proper name interpretation)
d. The three Kims I met yesterday were all tall (common name interpretation)
4. a. *a lot of wine is/are many
b. *there are too much carpet in this room
c. *too much carpets
5. a. The factory horns sirened throughout the raid
b. The factory horns sirened midday and everyone broke for lunch
c. The police car sirened the Porsche to a stop
d. The police car sirened up to the acident site
e. The police car sirened the daylight out of me
6. Formal properties of 'words' are weak (and can be coerced, type-shifted) Formal properties of 'structures' are strong (and cannot be coerced, type-shifted)
7. A Preview of Coming Attractions:
a. Some general syntactic considertations
b. What are the functional nodes within the DP and how do their different modes of licensing give rise to different interpretations?
c. Proper Names, Common Names
d. The Mass-Count Distinction
e. Weak and Strong quantifiers
f. The definite article.
g. Pseudo Partitives

2. What is (Functional) Structure - a Brief Overview

8. A. Functional structures are headed by a categorically-labeled open valus which must be assigned range by the appropriate operator
B. The functional lexicon of each language makes available an array of (direct) range assigners for specified open values. Such range assigners come primarily in two varieties; f-morphs and abstract head features. The latter require the support of some head (L, possibly F) to be pronounced, a fact that typically translates to the obligatory nature of head movement in such contexts.
C. The derivation converges just in case the phonology dispenses a representation for the combination of head+head feature.
D. Two modes of indirect range assignment are possible (i.e., range by elements which are not specified, in the functional lexicon, as range assigners for a particular open value). One involves range assignment by an adverb of quantification or a discourse operator. The second involves specifier - head agreement.
E. A portmanteau item is a single functional item which can assign range to more
than one open value. A portmanteau item merges with the lowest target open value, and moves up the tree to assign range to higher values. Every is a portmanteau item which assigns range to $\langle\mathrm{e}\rangle_{\text {DIV }}$ (distributive); to $\langle\mathrm{e}\rangle_{\#}$ (universal), and to $\langle\mathrm{e}\rangle_{\mathrm{D}}$ (strong)
F. All phrasal projections have an $X^{\text {max }}$ and an $X^{\text {min }}$ (but in line with Chomsky, 1995b, these are derived notions, rather than primitives, and the same node may be both $X^{\text {max }} \overline{\text { and }} X^{\text {mim }}$)
G. Every phrasal projection has at most one specifier and at most one complement, a fact that follows directly from binary branching.

9. a. During the summer, water in the pond mostly evaporates
b. Hummingbirds always die young
10. a. Water in the pond is mostly lost through evaporation
b. Hummingbirds always drink from our birdfeeder.
11. a. many hummingbirds always die
b. little water in the pond mostly evaporates
12. [\#\# $<\mathrm{e}>{ }_{\#} \ldots$... [Np]]
13. Where superscript 3 is a value appropriate fir $<\mathrm{e}\rangle_{\#}-$ and X^{3} an assigner of 3 :
A. $\quad\left[\# \mathrm{P} \quad \boldsymbol{q}^{3}-\left\langle\mathrm{e}^{3}\right\rangle_{\#}-\mathrm{N}\left[\begin{array}{lll}\mathrm{NP} & \mathrm{N}\end{array}\right]\right.$
\boldsymbol{q} is head feature, L-head movement obligatory (dual marking in Hebrew, Arabic).
b.

c. a^{2} verb ${ }^{3}$ [\#Р $\left.\quad<\mathrm{e}^{3}\right\rangle_{\#} \quad\left[\begin{array}{lll}\mathrm{NP} & \mathrm{N} &]\end{array}\right]$ adverb of quantification; L-head movement not forced.
14. a. the cat
b. $\left[\begin{array}{lll}\mathrm{DP} & \left.\text { the. }<\mathrm{e}>{ }_{\mathrm{d}}[(\mathrm{AP})[\mathrm{NP} \text { cat }]]\right]\end{array}\right.$
15. a. ha.xatul
the.cat

16. a. The dog's ear
b. A dog's ear
17. a. *the dog's the ear
b. *a dog's the ear
c. *the dog's an ear
d. *a dog's an ear
e. *a dog's two ears (non-generic reading)
18. The dog's two ears
19. a. an ear of the dog
b. the ear of a dog
c. (the) two ears of the/a dog
20. [${ }_{\mathrm{DP}}\left[\mathrm{DP} \text { the dog's] }{ }^{3}<\mathrm{e}^{3}\right\rangle_{\mathrm{d}} \ldots$ [Np ear]]
21. the two ears (of the dog)

Hagit Borer

Department of Linguistics
University of Southern California
Los Angeles, CA 90089-1693
USA
borer@usc.edu
http://usc-rcf.usc.edu/~borer

The Syntax of Referring Nominal Expressions

CRISSP, April 1 -April 4, 2008

Hagit Borer

Lecture Note 2 Proper Names

1. Licensing D (Assigning Range to $<\mathrm{e}>_{d}$) - from Longobardi 1995

1. A "nominal expression" is an argument only when introduced by a lexically filled D
2. Empty determiners in Italian (Spellout):
a. Occur with plural or mass head nouns only
b. Are subject to lexical government, on a par with null heads.
c. Receive only an indefinite interpretation corresponding to that typically associated with existential quantification.
3.

4.

2. Proper or Common Names?
5. a. Il mio Gianni ha finalmente telefonato the my Gianni has finally telephoned
b. *Mio Gianni ha finalmente telefonato
c. Gianni mio ha finalmente telefonato
d. Il Gianni mio ha finalmente telefonato
6. a. E venuto il vecchio Cameresi is come the older Cameresi
b. $* E$ venuto vecchio Cameresi
c. E venuto Cameresi vecchio is come the older Cameresi
d. E venuto il Cameresi vecchio
7. a. Mio caro Gianni, vieni qui!

My dear Gianni, come here
b. Gianni mio caro, vieni qui!
8. a. Old John came in
b. *John old came in

10. a. Cat came
b. I invited Dog/*dog
11. a. Tall Kim showed up here
b. The tall Kim showed up here
c. Good old Kim showed up here
d. Tall Kims are a rare sight
e. I saw tall Kims
f. The tall Kims will handle this problem
12. a. keleb nabax meuxar (proper name only, and compare with (12d), (14a)) dog barked late
b. baraxti mi-keleb (ambiguous) ${ }^{1}$ ran-away.1.sg from-dog
c. 'etmol nabax keleb meuxar (ambiguous) yesterday barked dog late
d. ha.keleb nabax meuxar (common name only) the.dog barked late
13. a. Rina hopira po meuxar (proper name only, and compare with (14b) Rina appeared here late
b. 'etmol hopira po rina meuxar (ambiguous)
yesterday appeared here rina late
c. rinot tamid me'axrot (generic) Rinas always late

[^0]d. *rinot 'exaru ha.boqer (*existential, (\#generic) and compare with (14c) rinas were-late this morning
e. hizmanti rinot la-mesiba (existential, *generic)
invited.1.sg rinas to the party
f. la-mesiba ha.zot higiu rinot
to-this party, arrived rinas (existential, *generic and compare with (14d)
14. a. eyze keleb nabax meuxar (common name only) some dog barked late
b. eyze rina hopira po meuxar (common name only) some rina appeared here late
b. kama rinot exaru ha.boqer(common name only) several rinas were-late this morning
c. la-mesiba ha.zot higiðu kol ha.rinot to this party arrived all the rinas.
15. a. ze'eb radap axrey ha.yeled Ze'ev chased after the.boy 'Ze'ev chased the boy' (proper name only)
b. 'etmol radap ze'eb axrey ha.yeled yesterday chased $\overline{Z e ' e v} /$ a wolf after the.boy
i. 'Yesterday, Ze'ev chased the boy' (proper name)
ii. 'Yesterday, a wolf chased the boy' (common name)
c. baraxti me-ze'eb
ran-away.1.sg. from-Ze'ev/wolf
i. 'I ran away from Ze'ev' (proper name)
ii. 'I ran away from a wolf' (common name)
16. a.

b.

3. Some More on Proper Names with Determiners

17. a. The Queen Mary sailed for the last time in 1962
b. *Queen Mary sailed for the last time in 1962 (under the intended interpretation)
18. This Kim is really getting on my nerves
19. a. ha.raniha.ze mamaš role li ralha.racabim the.rani the.this really climbs to-me on-the nerves
'This Rani really gets on my nerves'
b. betax šamðat kbar ral šubo šel ha.bibi probably heard.2.sg.f. already about return.his of the.Bibi 'You probably heard already about the return of the Bibi (=Bibi's return)'
20. So I hear we are inviting this Pat person?
21. a. al-hassan (hassan: 'good, good looking')
b. al-faaDel (faaDel: 'virtuous')
22. a. (*l') youssuf
b. (*l') maryam
23. a. He is a Bronx-lover
b. This is a Bronx-type environment
c. Every city can use a Bronx
24. a. Der Hans ist weggegangen (German)
'Hans is gone'
b. O Kostis efuge (Greek) 'Kostis is gone'
25. The predication problem:

Common nouns moved to D are NOT predicated of their original, common name meaning (e.g., Wolfgang is not 'he who walks like a wolf'). This raises the question of whether the XS-model allows such a radical stripping of a concept from its meaning, in some structures, as to leave, of it, only the 'appelation' property.
26. A non-solution - one could suggest, in line with Li (1998), that all common names may merge as determiners. This solves the predication problem, but the correlative cost is assuming that all common names (indeed, all phonological words) are ambiguous between a CONCEPT and a DETERMINER. That assumption, once made, is however applicable to the structure in (16a), as we can now assume that just in case the determiner version is inserted under N , it must move...

borer@usc.edu

http://usc-rcf.usc.edu/~borer

The Syntax of Referring Nominal Expressions

CRISSP, April 1 -April 4, 2008

Hagit Borer

Lecture Note 3

The Mass-Count Distinction and Plurals as Classifiers

1. The Mass-Count Distinction and Classifying Chinese

1. If listemes do not come with grammatical features of any sort, the mass-count distinction, assuming it to be a valid grammatical distinction, cannot be associated with listemes, but must be the property of syntactic structures. That e.g. count is a property of structures, rather than lexical items, has been argued for directly, for Chinese (but not, e.g., for Italian) by Chierchia (1997, 1998).
2. Xuesheng lai le
student come par (aspectual)
'The students came' (Li 1998).
3. a. yí lì mi one CL rice
'one grain of rice
b. yi ge ren
one CL person
c. shenme quian
much money (shenme: literally what)

1.1. Chierchia's claims:

4. A.A semantic parameter:
i NP is [+pred, -arg]
ii NP is [-pred, $+\arg$]
iii NP is [+ pred, $+\arg$] (in actuality, either [+pred, $-\arg$] or [-pred, $+\arg]$)
B. Mass nouns are lexical plurals
1.2. What (purports) to follow from 4 A-B for Chinese (with value Aii):
5. a. The absence of articles
b. The absence of plural morphology
c. The fact that every noun extension is mass
d. A numeral may combine with a noun only through a classifier
e. Nouns can occur bare in argument positions

1.3 The line of reasoning:

6. a. In Chinese, NPs are arguments. In. e.g., Italian, NPs are predicates. In Italian D must project for an argument to emerge (D turns a predicate to an argument). Therefore, in Italian arguments are DPs. In Chinese, on the other hand, NPs are already arguments and there is no need to project D . In the absence of D , we don't expect determiners, and indeed, we get none. Properties (a) and (e) follow.
b. But Chinese, of course, has quantifiers, and quantifiers need restrictions, i.e. predicates. So there must be a way to turn NP arguments in Chinese to predicates, just as there is a way to turn predicates to arguments in Italian. It turns out that the semantic properties of the operator which converts arguments to predicates must operate on kinds (rather than individuals), and thus, by necessity, gives rise to mass predicates. It now follows that no plural marking can exist, as mass nouns are already lexically plural. It further follows that classifiers are needed to license numerals, as numerals cannot otherwise occur with mass predicates. We have now derived properties ($\mathrm{b}, \mathrm{c}, \mathrm{d}$), as well as the fact that in Chinese, count interpretation derives from the existence of some syntactico- semantic structure, and not from the properties of specific lexical items.
7. d : a function that turns kinds to (mass) predicates, operates on idealized kinds ${ }^{\cap}$: a function that turns predicates to kinds
8. DET converts predicates to kinds (and projects as D)

DET' converts kinds to (mass) predicates: $\mathrm{DET}^{\prime}(x)(\mathrm{P})=\mathrm{DET}(x)(\mathrm{P})$
Example: EVERY' (dog) (bark) = EVERY (${ }^{\text {dog }}$) (bark)

1.4. Problems for Chierchia:

9. A.What excludes plural marking on the output of the classifier system (i.e., above it, and attached to it as a bound plural morpheme)? Why is this not attested?
B.If in Italian DET is in D , why is DET^{\prime} not in some D^{\prime} for Chinese? And if Italian has a null DET which converts predicates to arguments (e.g., for existentially interpreted bare plurals) how do we know that there is no null DET' which converts Chinese arguments to predicates? And why couldn't there be a phonologically realizable DET' article on a par with the which converts Chinese arguments to predicates, in D or in some D'? Therefore, properties (a, e) follow from a number of independent stipulation on the difference between DET^{\prime} and DET (DET^{\prime} is not in D^{\prime}; there is no null $\mathrm{DET'}^{\prime}$, there is no 'the' DET^{\prime} ').
C.(c) is probably true, but not clearly unique to Chinese; (d) is clearly true. But can they be derived?
D.See Li (1997) for the argument that Chinese has a DP projection. See Cheng and Sybesma $(1998,1999)$ for arguments that the distribution of determinerless NPs in Chinese is not free, and largely follows the same distribution of bare NPs in languages which otherwise have overt determiners, and no Chinese-type classifiers.
E. Something Chierchia's account is entirely silent on: why don't languages such as English and Italian have a (non-phrasal) classifier morphology?

2. Things to explain:

10. A. Why doesn't Chinese have plural morphology?
B. Why doesn't e.g. English have classifier morphology?
C. Why are classifiers obligatory in Chinese in numeral contexts? And if that indicates that the NP predicates are mass, why are they mass?
11.a. (DP

b. (DP

$m i$
rice

3. What I will assume:

12. A.NP predicates in Chinese are mass because all $\mathrm{N}^{01} \mathrm{~s}$, universally, are mass
B. All $\mathrm{N}^{0} \mathrm{~s}$ are mass, because nouns, as such, are listemes without any grammatical structure. Unless given structure, they will acquire none. Mass is simply a default interpretation in the absence of 'count' structure.
C.English (and Hebrew, and many other languages) do have classifier morphology. It is called 'plural'. The reason plural morphology and classifier morphology do not co-occur is because they range over the same functional value, that of $\langle\mathrm{e}\rangle_{\text {Div }}$. Contrary to common wisdom, plurality is not a number specification or a quantity specification, nor is it a function from singulars. Rather, it is a divisional function on mass. The difference between the classifier system of English and that of Chinese is that the latter defines a possible portion, while the former only divides.
D.Dominating DivP is a Quantity Phrase (\#P). \#P quantities either stuff or divisions.
(Notation: subscripts are category labels; superscripts are range assignment configurations) 13. Non-Quantity structures:
Determinerless mass
b. Determinerless Pl.
$\left[{ }_{\mathrm{DP}}<\mathrm{e}>_{\mathrm{d}}\right.$
$\left[\begin{array}{ll}\text { DIV } & \operatorname{dog}<\boldsymbol{d i v}^{7}><\mathrm{e}^{7}>_{\text {DIV }}\end{array} \begin{array}{c}[\mathrm{NP} \text { salt }]] \\ {[\mathrm{NP} d \theta g]}\end{array}\right]$
13. Quantity structures:
a. Quantity (indef.) mass
${ }_{\mathrm{DPP}}<\mathrm{e}>\mathrm{d} \quad\left[\# \mathrm{P} \mathrm{Q}^{5}\right.$

$$
\left\langle\mathrm{e}^{5}\right\rangle_{\#}
$$

[${ }_{\mathrm{NP}}$ Salt]]]
b. Quantity (indef.) Pl. $\left[{ }_{\mathrm{DP}}<\mathrm{e}>{ }_{\mathrm{d}} \quad\left[\# \mathrm{P} \mathrm{Q}^{5}\right.\right.$
c. Quantity (indef.) $\mathrm{Sg}_{\dot{9}}$
$\left\langle\mathrm{e}^{5}\right\rangle_{\#}\left[\right.$ DIV $\left.d o g<\boldsymbol{d i v} \boldsymbol{v}^{9}\right\rangle\left\langle\mathrm{e}^{9}\right\rangle_{\text {DIV }}[\mathrm{NP} d \theta \mathrm{~g}$] $]$] $]$

d Definite mass

$$
\left[\begin{array}{lll}
\mathrm{DP} & \text { the } \left.\left.\left.e^{3}<\mathrm{e}^{3}\right\rangle_{\mathrm{d}}\left[\# \mathrm{P} \quad \text { the } e^{3}<\mathrm{e}^{3}\right\rangle_{\#} \quad[\mathrm{NP} \text { salt }]\right]\right]
\end{array}\right.
$$

e. Definite pl .

f. Definite sg.
4. The Mass-Count Distinction. (summary largely based on Chierchia, 1998)
: : interpretable but 'odd'.
15. Availability of plural morphology:
a. There are (three) shoes in this store
a^{\prime}. ©There are (three) footwears in this store
b. There are (three) drops of blood on the wall
$\mathrm{b}^{\prime} .0$ There are (three) bloods on the wall

16. Availability of numerals:

a. There are three shoes under this bed
a'. ©There are three footwears under this bed
b. There is one pebble on the floor
b^{\prime}. 2 There is one sand on the floor
17. Obligatoriness of classifier or measure phrase when combining with numerals:
a. three $:$ (grains of) rice(s)
b. one $:$ (pound of) cheese(s)

18. Choice of determiners:

a. Mass determiners: little, much,
b. Count determiners
i. Singular: every, a, each
ii. Plural: several, many, few, a few, both
c. Mass and plural determiners: all, a lot of, plenty, more, most
d. Unrestricted determiners: the, some, any, no
19. Independence of distinction from structure of matter:
a. shoes vs. footwear
b. cloths vs. clothing
c. coins vs. change
20. (Predominantly), mass nouns can be made count:
a. a wine, a love, a thread, a salt, a stone
b. wines, loves, threads, salts, stones
c. all the wines, all the loves, all the threads, all the salts, all the stones
d. every wine, every love, every thread, every salt, every stone
e. We store three bloods in this lab
21. (Predominantly), count nouns can be made mass (cf. Lewis's fabled universal grinder):
a. there is dog/stone/chicken on this floor
b. that's quite a bit of table/carpet for the money
c. (too) much dog/chicken, (too) much stone, (too) much table, too much carpet
d. a lot of dog/chicken, a lot of stone, a lot of table, a lot of carpet
e. all dog/chicken, all stone, all table, all carpet

5. Some (repeated) observations on what can or cannot be coerced:

22. a. *there is rabbits in my stew
b. *there is a portion of rabbits in my stew
c. *a rabbits was singled out
d. *The rabbit/meat are numerous
e. *Much rabbits was consumed
23. Conclusion: 'true' grammatical marking, such as singular-plural agreement, $-s$, and determiners, cannot be coerced. It therefore follows that if, e.g., meat were to be marked as mass, the status of that marking would need to remain quite different from the status of the expression much meat, the latter being absolutely incoercible, as opposed to the former.
24. The observations in (20)-(21) are the key to the mass-count distinction, suggesting that it is not lexically encoded on heads, but dependent on the structure in which stems are embedded. "Mass" structure leads to mass interpretation and allows mass determiners. "Count" structure leads to count interpretation and allow "count" determiners. The "massiness" or the "countiness" of isolated listemes can be over-ridden by the grammar because it is not grammatical. The "massiness" or the "countiness" of mass/count structures is grammatical, and hence must be respected by the grammar.
25. Chinese has 'countifying' morphemes; it does not have 'massifying' morphemes (although it does, of course, have mass modifiers, by assumption in \#P). Prima facie, this supports the claim that mass interpretation involves less structure.
26. A DivP (Classifier Phrase) for English
27. a.

cat

6.1. The Typology of English determiners:

27. a. A singular by definition is both a quantity and a division; thereby, its dividing function and its counter function cannot be separated. Thereby, either a must be assumed to assign range to both $\langle\mathrm{e}\rangle_{\#}$ and to $\langle\mathrm{e}\rangle_{\text {DIV }}$, or the nodes are fused,
for singulars (I will not attempt to motivate a choice between these execution modes here)
b. Both divided mass and undivided mass can be quantitied. However, only divided mass can be counted.
c. Counting imposes uniformity of division (by some conceptually coherent criteria):
incoherent: there are 435 tables, chairs, computers, and erasers in this room coherent: there are 435 man-made objects in this room
i. there are three cats in the room
ii. I bought three apples
iii.I ate three apples
iv. I threw away three apples

A specific execution (with thanks to B. Schein, p.c.): a divisional function involves the superimposition, on a mass denotation, of an infinite set of webs, or reticules (including potentially without any divisions at all). The \# function involves the selection, among these reticules, of one which matches the properties of the specific \#-determiner. For e.g., a cardinal, it will involve the selection of reticule with (uniform) individuals.
d. How come there are no determiners in English (or in other languages which I know of) which pick up plural and singular (so-called count nouns) but exclude mass? If plurals, like classifiers, are dividers but singulars are quantities, this follows.
28. Numerals in English are not dividers:
a. *two meat/boy
b. *several meat/boy
c. *many meat/boy
d. *a few meat/boy
e. *both meat/boy
29. Every and each are dividers and counters (and also $<\boldsymbol{d}\rangle$), hence portmanteau items (cf. Gil, 1995) (potentially, fused).
30. Hungarian quantifiers are both dividers and counters (portmanteau, possible fusion structures; similar facts reported in Turkish):
a. a kalap (-ot)
the hat (-acc)
b. egy kalap(-ot)
a hat (-acc)
c. kalap-ok(-at) hat $\mathrm{pl}(-\mathrm{acc})$
d. a kalap-ok(-at) the hat $\mathrm{pl}(-\mathrm{acc})$
31.a. a két fekete kalap(-ot) the two black hat(-acc)
b. minden kalap(-ot)
every hat(-acc)
c. az osszes kalap(-ot
the all hat(-acc)
d. (a) nehany kalap(-ot)
(the) some hat(-acc)
e (a) keves kalap(-ot)
(the) few hat(-acc)
f. (a) sok kalap(-ot)
many hat(-acc)
(Kriszta Szendroi, p.c.; see also Szablocsi, 1994)
32. Dividing numerals:
[DP [\#\# két $^{7} \quad<\mathrm{e}^{7}>_{\#} \quad\left[\begin{array}{llll}\text { DIV }\end{array}{ }^{\text {max }}\right.$ két $^{7} \quad<\mathrm{e}^{7}>_{\text {DIV }}$ [NP kalap]]]]
33. a. *zero boy
b. zero boys
c. zero mea
34. a. no boy
b. no boys
c. no meat
35. *zero a cat
36. a. all meat
b. all boys
c. *all boy (but available with mass interpretation)
37. a. 0.5 apples
b. *0.5 apple (with relevant interpretation)
c. half *(an) apple
38. Classifiers or Plural: Armenian (Michelle Siegler, p.c.); see also Chinese (Li, 1998)
a. yergu hovanoc uni-m
two umbrella have-1s
'I have two umbrellas'
b. yergu had hovanoc uni-m two Cl umbrella have-1s
'I have two umbrellas'
c. yergu hovanoc-ner unim
two umbrella-pl have-1s
'I have two umbrellas'
d. *yergu had hovanoc-ner unim two CLl umbrella-pl have-1s
39. a. The indefinite article, numeral one: [DP [\#\# ${ }^{\max }$ one/a $a^{4}<\mathrm{e}^{4}>_{\#}$ [DIV ${ }^{\text {max }}$ oneta $4^{4} \quad<\mathrm{e}^{4}>_{\text {DIV }}[\mathrm{NP}$ meat/boy]]]]
b. Plural-taking quantifiers, numerals other than one (including zero):
[DP[\#p three/several $\left.{ }^{3}<\mathrm{e}^{3}\right\rangle_{\#} \quad\left[\mathrm{DIV}^{\max }\right.$ meat-/boy- $\left\langle\boldsymbol{d i v}{ }^{5}\right\rangle\left\langle\mathrm{e}^{5}\right\rangle_{\mathrm{DIV}}[\mathrm{NP}$ meat/boy]] $]$
c. Singular-taking quantifiers:

40. A typology of determiners and the mass/count distinction:

	\pm counters \pm dividers	Syntactic Realization
little, much	N/A	no DIV ${ }^{\text {max }}$ projected
every, each,	$+\quad+$	DIV $^{\text {max }}$ projected, $\langle\mathrm{e}\rangle_{\text {DIV }}$ licensed by each, every,
a	+ +	No DIV ${ }^{\text {max }}$ projected
a.several, many, few, a few, both b.numerals	+	DIV $^{\text {max }}$ projected, $\langle\mathrm{e}\rangle_{\text {DIV }}$ licensed by plural marking
all, a lot of, plenty, more, most	unspecified -	i. DIV $^{\text {max }}$ projected, $\left\langle\mathrm{e}>_{\text {DIV }}\right.$ licensed by plural marking ii.DIV ${ }^{\max }$ not projected
Hungarian numerals	$+\quad+$	DIV $^{\text {max }}$ projected, $\langle\mathrm{e}\rangle_{\text {DIV }}$ licensed by numerals
some-1, any-1, no-1 (same as all, more, etc.)	unspecified -	i. DIV ${ }^{\text {max }}$ projected, $<\mathrm{e} \gg_{\text {DIV }}$ licensed by plural marking ii.DIV ${ }^{\text {max }}$ not projected
$\begin{aligned} & \text { some-2, any-2, no-2 } \\ & \text { (same as every, } \\ & \text { each, a) } \end{aligned}$	+ +	DIV $^{\max }$ projected, $\left\langle\mathrm{e}>_{\text {DIV }}\right.$ licensed by any, some, no
the (a discourse anaphor)	(as per (as per antecedent) antecedent)	(as per antecedent)

7. Some evidence from telicity

7.1. Verkuyl's generalization

41. Verkuyl's Generalization (Verkuyl 1972, 1989):

Telic interpretation can only emerge in the context of an argument with property α (where the nature of property α is generally sought within the domain of quantification of some sort, so that it distinguishes between mass nouns and bare plurals, on the one hand, and singulars and quantitied expressions, on the other hand, but its precise characteristics are not agreed upon.)
42. a. Kim ate apples this afternoon (*in an hour)
b. Pat built houses (*in two months)
c. Robin drew circles (*in half an hour)
43. a. Kim ate three apples (in an hour)
b. Pat built more than three houses (in two months)
c. Robin drew some circles (in half an hour)
44. a. Kim ate meat (*in an hour)
b. Pat built furniture (*in two months)
c. Robin sifted sand (*in half an hour)
45. a. Kim ate too much meat (in an hour)
b. Pat built most furniture (in two months)
c. Robin sifted (too) much sand (in half an hour)

7.2. Homogeneous, divisive, cumulative, quantized etc.

46. The join semi-lattice:

$$
\{a, b, c, d, \ldots\}
$$

Plurals are true of pluralities; singular nouns are true of individuals; pluralization is a function that applies to sets of atoms to yield sets of pluralities
47. Quantized \rightarrow telic

Cumulative (tends to be) atelic (Krifka, 1992, 1998)
48. a. Cumulative (Krifka, 1998)
$\forall X \subseteq U_{P}\left[\operatorname{CUM}_{\mathrm{P}}(X) \leftrightarrow \exists x, y[X(x) \wedge X(y) \wedge \neg x=y] \wedge \forall x, y[X(x) \wedge X(y) \rightarrow X(x \oplus y)]\right]$ (X is cumulative iff there exist y, x with the property X (and x distinct from y) such that for all x and y, if x, y have the property X, then X is a property of the sum of x and y)
b. Quantized (Krifka, 1998)
$\forall X \subseteq U_{P}\left[\mathrm{QUA}_{\mathrm{p}}(X) \leftrightarrow \forall x, y[X(x) \wedge X(y) \rightarrow \neg y<\mathrm{p} x]\right]$
(X is quantized iff for all x, y with the property X, y is not a proper part of x)
49. Kim ran to the store (neither quantized nor cumulative) in three minutes
50. a. Kim ate more than three apples (cumulative) in three minutes
b. Kim ate some apples (cumulative) in three minutes
c. Kim ate some meat (cumulative) in three minutes
51. Krifka's (1998) Solutions:
a. Telic is distinct from Quantized (but then, what is telic, and why is quantization important?)
b. The NPs in (50) scope out, thereby referring to a fixed, predetermined quantity, making them quantized.
52. a. *Bill ate apples and Bill didn't eat apples
b. Bill ate sóme apples and Bill didn't eat sóme apples (Carlson 1977)
53. *Bill ate sm apples and Bill didn't eat sm apples
54. a. Bill ate sm apples in half an hour
b. *Bill ate sm apples in half an hour and Bill didn't eat sm apples in half an hour
c. Bill ate sóme apples in half an hour and Bill didn't eat sóme apples in half an hour
55. Every boy ate sm apples in two minutes
56. a. Juana comió manzanas (*en media hora/durante media hora) Juana ate apples (*in half an hour/for half an hour)
b. Juana comió unas manzanas (en media hora/?durante media hora) Juana ate ART.PL apples (in half an hour/?for half an hour)
57. Kiparsky (1998)
a. Homogenous predicates are atelic (marked by partitive case)
b. Non-homogeneous predicates are telic (marked by accusative case)
c. $\mathrm{V}(-\mathrm{H}), \mathrm{DP}(-\mathrm{H}) \rightarrow$ telic; all other combinations $(<+\mathrm{H},+\mathrm{H}\rangle,<+\mathrm{H},-\mathrm{H}\rangle$ are atelic
58. Homogenous: cumulative and divisive

Divisive: P is divisive iff for any $\mathrm{P}(x)$ there is some $\mathrm{P}(y)$ such that $\mathrm{P}(x-y)$ (following Piñon)
Cumulative: P is cumulative iff for any $\mathrm{P}(x)$ and any $\mathrm{P}(y), \mathrm{P}(x+y)$
59. But this still leaves ($50 \mathrm{~b}, \mathrm{c}$) as well as (56b) homogenous; alternatively, if we assume that plurals are sets of singulars, (50b) is not divisive, but by the same token, neither are bare plurals.
60. A Weaker Condition (Quantity) (following Kiparsky, 1996):

P is a quantity iff P is not homogenous and $\forall x, \exists y \wedge y<_{\mathrm{p}} x[\mathrm{P}(x) \rightarrow \neg \mathrm{P}(y)]$ (P is quantity iff whenever it applies to x, there exists a y, where y is a proper part of x, such that P does not apply to y).
61. Homogeneous: P is homogenous iff it is cumulative and divisive

Divisive: $\quad \mathrm{P}$ is divisive iff $\forall x, \mathrm{y}[\mathrm{P}(x) \wedge \mathrm{P}(y) \wedge y<x \rightarrow \mathrm{P}(x-y)]$
Cumulative: following Krifka.
62. quantity \leftrightarrow telicity
63. (Bare) plurals are not a function from singulars. Dividers, as such, do not choose among the infinite available set of reticules, including those which do not have any divisions, hence there need not be a y which is not P , for bare plurals to be true.
64. a. run to the store is quantity; run to the store is not homogenous
b. more than x is quantity; more than x is not homogenous
c. assuming that any \#-determiner, including some, picks a reticule with some uniform divisions, even if their number or remains unknown, some is a quantity; some is not homogenous.
65. a. [DP $<\mathrm{e}>$
b. $\left[\mathrm{DP}<\mathrm{e}>{ }_{\mathrm{d}}\right.$
[DIV ${ }^{\text {max }}$ cats $\langle\mathrm{e}\rangle_{\text {DIV }}$
$[\mathrm{Np}$ eats $]]]$
$[\mathrm{NP}$ salt $]]$
66. a. $\left[{ }_{\mathrm{DP}}<\mathrm{e}>_{\mathrm{d}}\left[{ }_{\mathrm{HP}}<\mathrm{e}>_{\#} \quad\left[\operatorname{DIV}^{\max }\right.\right.\right.$ cats $<\mathrm{e}>_{\text {DIV }} \quad[\mathrm{NP}$ cats $\left.\left.\left.]\right]\right]\right]$
b. $\left[\mathrm{DP}<\mathrm{e}>_{\mathrm{d}}\left[\# \mathrm{P}<\mathrm{e}>_{\#}\right.\right.$
[np salt]]]

8. A Final Note on Chinese Classifiers

67. a. DIV in Chinese, as in English, creates an infinite number of reticules. The \# function, however, will only pick cells that are compatible with the portion defined by the specific classifier used (e.g., li for 'grain')
b. All reticules in Chinese-type classifier languages must include at least one wellformed cell, relative to the meaning of a particular classifier (e.g., $l i)$. In this latter execution, the projection of e.g. li entails the projection of \#.
68. a. *[DP
$\left[\begin{array}{lll}\text { DIV } & c l^{\mathrm{i}}<\mathrm{e}^{\mathrm{i}}> & \left.\left[\begin{array}{ll}\mathrm{N} &]\end{array}\right]\right]\end{array}\right.$
b. $\left[\operatorname{DP}\left[\# \mathrm{P} c l^{\mathrm{i}}<\mathrm{e}^{\mathrm{i}}>_{\#} \quad\left[\begin{array}{llll}\mathrm{DIV} & \epsilon l^{\mathrm{i}}<\mathrm{e}^{\mathrm{i}}>_{\text {DIV }} & {[\mathrm{N}} &]\end{array}\right]\right]\right] \leftarrow$
69. [DP [$\mathrm{N} \quad]]$

Lecture Note 4
 Things that Count

0.0. Duals

1. Duals are Dividing Counters:
a. *Šney/štey yom.ayim
(yam.im 'days') two(m)/two(f) day.dual
b. *kama xoď̌.ayim several month.dual
c. *harbe šbu.ayim
(xodaš.im 'months')
(šabuu.ot 'weeks')
2. 'Dual' morphology in plural contexts:
a. štey 'ozn.ayim (*oznim) two ear.pl
b. kama ragl.ayim (*raglim) several foot.pl
c. harbe yad.ayim (*yadim) many hand.pl
3. The Paradigm: Grocerese Numerals (GNs) ('Restuarantese', Cook-book Registers).
4. a. šney/'eser lexem
two.m/ten.f bread.m
b. šney/'eser gbina
two.m/ten.f cheese.f
c. Šnayim lexem
two.m bread.m
d. Šnayim gbina
two.m cheese.f
5. a. šney lexam.im
two.m bread.m.pl
b. štey gbin.ot
two.f cheese.f.pl
c. ?štey lexam.im (colloquial only)
two.f bread.m.pl
d. ?šney gbbin.ot
two.m cheese.f.pl
6. a. 'exad xalab one.m milk.m
b. 'exad gbbina one.m cheese.f
7. Some differences between GNs and other quantity expressions:
a. 'exád occurs pre-nominally ((4) vs. (6)).
b. In the presence of cardinals distinct from 'exád the restriction (may be) a bare stem, not plural.
c. With the exception of 2, pre-nominal GNs have a fixed form, regardless of the gender of the restriction (at times masculine-1-'exád (m); at other times feminine - 10-reser).
d. The phonologically-unbound form of the cardinal 'two', šnayim occurs with a restriction, not possible outside of Grocerese.
8. a. *'asara gbina (compare with (3a)) ten cheese
b. *'axát gbbina (compare with (4b)) one.m cheese.f
9. \#šnayim gbin.ot/lexam.im two cheese.pl.f/bread.pl.m (but see 12))
10.a. šney ragbaniya
two tomato
'*two tomatoes'
'two portions of tomato stuff (e.g., spread)'
c. 'exád melapepon
one cucumber
'*one cucumber'
'one portion of cucumber stuff (e.g., spread)'
b. reser melapepon
ten cucumber
'*ten cucumbers'
'ten portions of cucumber stuff (e.g., spread)'
d. 'exád ragbaniya
one tomato
'*one tomato'
'one portion of tomato stuff (e.g., spread)'
10. Bare stem complements of GNs must be interpreted as mass
12.a. šnayim zeyt.im
two olives
'*two olives'
'two fixed portions of olives' (e.g., cans, jars, etc.)
b. 'exád garrin.im
one sunflower-seeds
'*one sunflower seeds'
'one fixed portion of sunflower seeds'
c. šnayim tapux.im two apples
'*two apples'
'two fixed portions of apples'
13.Plural complements of GNs must be interpreted as fixed portions of pluralities

2. Different from Partitive 'exád.

2.1 Gender Agreement in Partitives but not in Grocerese.

14.a. 'exád ha.dub.im one.m the.bears.m.pl
b. 'axát ha.xatul.ot one.f the.cats.f
15.a. *'exád ha.dub.ot one.m the.bear.f.pl (one of the female bears)
b. 'axát ha.dub.ot one.f the.bear.f.pl (one of the female bears)

2.2. Plural as Portion, not as Reference Group.

16.a. 'exád zeyt.im one olives 'one portion of olives' '*one of the olives'
b. 'exád ha.zeyt.im one the.olives
'*one portion of olives' 'one of the olives'

2.3. Definite Marking in Partitives, not in Grocerese.

$\begin{aligned} \text { 17.a. *'exád } & \text { dub.im } \\ \text { one. } \mathrm{m} & \text { bear.m.pl }\end{aligned}$
b. *'axát xatul.ot one.f cat.f.pl

2.4. Bare Stem Complement in Grocerese, not in Partitives.

18.a. *'exád ha.dob
one.m the.bear.m
b. *'axát ha.xatula one.f the.cat.f

3. Different from Dividing Numerals.

4. But like English Pseudopartitives (and Chinese Massifiers).

23.a. two pounds of meat
b. two pounds of fish/dog (mass reading only)
c. \#two pounds of book
(Selkirk, 1977 and much subsequent literature)
24.a. two pounds of olives
b. one kilogram of sunflower seeds
25.a. *every ton of gold
b. *most pounds of meat
(Klooster 1972, Higginbotham, 1994, Chierchia, 1998b, de Swart, 1998, Schwarzschild and Wilkinson, to appear)
26.a. *the ton of gold
b. *those three pounds of fish
27.a. *šnayim ha.gbina
two the.cheese
b. *kol zahab
every gold (with the intended, measuring reading)
5. Structure for Grocerese Nominals.
5.1. Multi-headed Structure, Measure Phrase.
28.[\#P ... [NP-1 Šnayim [NP-2 gbina]]
two cheese
two pounds cheese (English)
two is a (quasi-functional) N-head.
two and cheese project two distinct functional complexes.
The expression as a whole is not a DP but a \#P (measure phrase).
(Ritter, 1991; Li, 1998; for similar claim see Schwarzschild, 2001).

5.1. GN May not Take a \#P (or DegP) Complement.

30.a. šnayim (*harbe/*maspiq/*yoter) gbina
two much/enough/more cheese
(two portions of much/enough cheese)
b. Šnayim (*harbe/*maspiq/*kama/*xamišim) zeyt.im
two many/enough/several/50 olives
(two portions of many/enough/several/50 olives)
31.a. two pounds of (*much/*little/*some) cheese
b. three kilograms (${ }^{*}$ many $/ *$ fifty $/{ }^{\text {some }}$) olives
32.a. šnayim gbbina šveycarit
two cheese Swiss 'two portions of Swiss cheese'exad
b. zeyt.im yeruq.im one olives green 'one portion of green olives'
33.a. two pounds of Swiss cheese
b. seven kilograms of green olives
34.šnayim gbina 'axát
two cheese one
'two portion/containers of one cheese' (as opposed to multi-cheese containers)

5.2. Conclusions and Structures.

35.a. 'exád, when occurring post-nominally, is not a \#-expression.
b. Plural inflection is not a \#-expression.
36.a. [... [\#\# one/a [div ${ }^{\text {max }}$ onelat [np meat/boy] $]$]
b. $\left[\ldots \quad\left[\ldots \mathrm{Ap}\right.\right.$ ten/few $\left[\mathrm{Div}^{\text {max }}\right.$ meat.s/boy.s $\quad[\mathrm{Np}$ meat/boy $\left.\left.\left.]\right]\right]\right]$

d. [... [\#\# much [NP salt]]]
e. [.. [Div ${ }^{\text {max }}$ cats [np eat] ${ }^{\text {c }}$ []]
f. [.. [np salt]]]

b. [... [\#\# 'eser/me'at [div ${ }^{\text {max }}$ xatul.ot [np xatula] $]$] ten/few cat.f.pl cat.f
 every
d. [... [\#\# harbe much(many)
e. [...
f. [...

$$
\begin{gathered}
{\left[\text { Div }^{\max }\right.} \\
\text { xatul.ot } \\
\text { cat.f.pl }
\end{gathered}
$$

[np xatula] $]$] cat.f
[${ }_{\mathrm{NP}}$ melax]]]
salt
[${ }_{\text {NP }}$ xatula] $]$]] 'bare plural' reading
cat.f
$\left[\begin{array}{ll}\mathrm{NP} \text { melax }]] \text { 'bare mass' reading }\end{array}\right.$ salt

39. Why not:
 two two

6. Container Phrases

40.a. šloša baqbuq.im xalab three bottles milk
b. šney spal.im sukar two cups sugar
(Doron 1992)
42.a. 'exád baqbuq xalab one bottle milk
b. 'exád sepel zeyt.im one cup olives
c. *'axát qupsa sukar
one.f box.f sugar
d. 'exád qupsa sukar
one.m box.f sugar
e. qupsa 'axát sukar box.f one.f sugar
44.a. šloša spal.im gdol.im sukar xum three cup.pl big.pl sugar.sg brown.sg 'three big cups of brown sugar'
b. exad zeyt.im yeruq.im
one olives green
'one portion of green olives'
b. šloša baqbuq.im gdol.im zeyt.im qtan.im three bottle.pl big.pl olive.pl small.pl 'three big bottles of small olives'
41.a. šloša baqbuq.im zeyt.im three bottles olives
b. šibr \quad mexal.im garrin.im seven containers sunflower-seeds
43.a. šloša baqbuqey xalab three bottles milk 'three milk bottles'
b. šney sipley sukar two cups sugar 'two sugar cups'
c. šloša baqbuqey zeyt.im three bottles olives 'three olive bottles'
d. šibra mekaley garrin.im seven containers sunflower-seeds 'seven flower-seed containers'
e. qupsat sukar 'axát box.f sugar one.f 'one sugar box'
45.a. *šloša spal.im leban.im sukar three cup white sugar (*three white cups of sugar, unless 'white cup' is a specific measuring unit)
b. *šloša baqbuq.im mizkukit zeyt.im
three bottles from-glass olives
'three glass bottles of olives'
46.a. šloša sipley sukar leban.im three cup sugar white 'three white sugar cups'
b. šloša baqbuqey zeyt.im mi-zkukit three bottles olives from-glass 'three olive bottles of glass'
47.a. Plural container head, mass complement:
[\#\#-1 Šney [DIV ${ }^{\text {max }}{ }_{-1}$ baqbuq.pl [np-1baqbuq ... two bottle.pl
b. Bare singular measure head, mass complement:
[\#P-1 baqbuq [DIV ${ }^{\text {max }}{ }_{-1}$ baqbuq [NP-1baqbuq bottle
c. Plural container head, plural embedded nominal:
[\#P-1 šney [DIV ${ }^{\text {max }}{ }_{-1}$ baqbuq.pl [NP-1 baqbut two bottle.pl
d. Singular measure head, plural embedded nominal
[\#P-1 baqbuq [DIV ${ }^{\text {max }}{ }_{-1}$ baqbut.pl \quad [nP-1baqbut bottle
[NP-2 xalab]]]] milk
[NP-2 xalab]]]] milk

$$
\left.\left.\left.\left[\begin{array}{c}
{\left[\text { DIV }^{\max }{ }_{-2}\right. \text { zayit.pl }} \\
\text { olive.pl }
\end{array} \quad[\mathrm{NP}-2 \text { zayit }]\right]\right]\right]\right]
$$

[DIV ${ }^{\text {max }}{ }_{-2}$ zayit.pl [NP-2 zayit]]]] olive.pl
48.a. *baqbuk.im zeyt.im bottle.pl olive.pl
b. *mexalim melax container.pl salt
49.a. [... [${ }_{\mathrm{DIV}}{ }^{\max }$ baqbuq.im $\quad\left[{ }_{\mathrm{NP}}\right.$ baqbuq $\quad\left[\operatorname{DIV}^{\max }{ }_{-2} \quad\left[\begin{array}{llll}\text { NP-2 } & \text { zayit.pl }]]]]\end{array}\right.\right.$ bottle.pl
b. [... [Div ${ }^{\max }$ baqbuq.im $\quad\left[{ }_{\mathrm{NP}}\right.$ baqbuq [np-2 melax]]]]
salt
50.a. *štey qupsa'.ot harbe/maspiq/yoter gbina two boxes much/enough/morecheese (two boxes of much/enough cheese)
b. *šloša baqbuq.im harbe/maspiq/kama/xamišim zeyt.im three bottles many/enough/several/50 olives (three bottles of many/enough/several/50 olives)
51.a. *štey qupsa'.ot gbbina raba/merata two boxes cheese much/little (two boxes of much/little cheese)
b. *šloša baqbuq.im zeyt.im rab.im/merat.im three bottles olives many/few (two bottles of many/few olives)
52.a. štey qupsa'.ot ragbaniya
two boxes tomato
'*two boxes of tomatoes'
'two boxes of tomato stuff (e.g., paste)'
b. rasara mekal.im melapepon
ten containers cucumber
'*ten cucumbers'
'ten containers of cucumber stuff'
c. 'exád qupsa melapepon
one box cucumber
'*one box with one cucumber'
'one box of cucumber stuff'
d. qupsa 'axát ragbaniya
box one tomato
'*one box with onetomato'
'one box of tomato stuff'
53.a. two (big) boxes of (*much/enough/more) Swiss cheese
b. two (hefty) bottles of (*many/enough/50) green olives
c. one box of (*an) apple

7. Excluding Some Alternative Structures.

7.1. Grocerese as Container Phrases with Null Container Heads?

55.a. šloša lexem
three bread
b. šloša kikar.ot lexem
three loaves bread
56.a. *šnayim kikar.ot lexem
two loaves bread
b. Šnayim lexem
two bread
57.a. šney xatik.ot gbaina
two.m. pieces.f.pl cheese
b. stey xatik.ot gbina
two.f. pieces.f.pl cheese
58.a. *štey gbbina
'two.f. cheese.sg.f
b. *štayim gbina
two.f. cheese.sg.f.
c. šney gbina
two.m cheese.sg.f
d. Šnayim gbina
two.m. cheese.sg.f.
e. 'eser gbina
ten.f. cheese.sg.f
f. *'asara gbina
ten.m cheese.sg.f.
59.a. *šnayim baqbuq.im xalav vs. šney baqbuq.im xalav two bottle.pl milk two bottle.pl milk
b. *'exád baqbuq gadol xalav tari vs. 'exád baqbuq xalav tari gadol one bottle big milk fresh one bottle milk fresh big
c. *'exád šnayim gbina one two cheese (e.g., one portion of two cheeses)
d. *šnayim 'exád gbbina šnayim gb্ina 'axat two one cheese vs. two cheese single (two portions of one cheese)
60.Cause for ungrammaticality: measure expressions, including GNs, cannot take a \#P complement.

Conclusion: GNs and container phrases have the same structural status: both head a measure expression.

 two bottle.pl
bottle.pl milk
[np-2 xalab $]$]] milk
c. [\#\#-1 'exád [Div ${ }^{\text {max }}{ }_{-1}$ 'exád [Np-1'exád one

$\begin{gathered} {\left[\text { Div }^{\text {Inax }}{ }_{-2}^{\text {baqbat }}\right.} \\ \text { bottle } \end{gathered}$	$[\mathrm{NP-2}$ baqbut $[\mathrm{NP-3}$ xalav]]]]]] milk

construct
7.2. Grocerese Numerals and Container Phrases as Specifiers of \#P?
62.a. [\#P-1 $\begin{array}{lllll}{[\text { spec-\#P-1 }} & {[\# \mathrm{P}-2} & \text { Šney } & \text { [DIV }{ }^{\max }{ }_{-2} & \text { baqbuq.pl } \\ \text { [wo } & & \text { bottle.pl }\end{array}$
b. $\left[\# \mathrm{P}-1 \frac{\text { spec-\#P-1 [\#P-2 Šnayim }}{\left.\text { [DIV }{ }^{\text {max }}{ }_{-2} \text { šnayim } \text { [NP-2 šnayima] }\right] \text {] }}\right.$
(e.g., Schwarzschild, 2001)
$\left[\begin{array}{lll}\left.\left[\begin{array}{lll}\text { NP-1 } & \text { tmisa } & \end{array}\right]\right] \\ {\left[\begin{array}{lll}\text { solution.f } & \\ \text { NP-1 } & \text { tmisa } &]]]\end{array}\right]}\end{array}\right.$
63.a. nexuca tmisa bišvil ha.miršam ha.ze needed.f.sg solution.f for the.recipe the.this 'a solution is necessary for this recipe'
b. nexuc.im šney baqbuq.im tmisa bišvil ha.miršam ha.ze needed.m.pl two bottles solution for the.recipe the.this 'two bottles of solution are necessary for this recipe'
c. *nexuca šney baqbuq.im tmisa bešvil ha.miršam ha.ze needed.f.sg two bottles solution for the.recipe the.this
64.a šnayim gbina yexolim le.haspik two cheese.f.sg may.m.pl to.suffice 'two portions of cheese may be enough'šnayim gbina yexolim le.haspik
b. *šnayim gbina yexola le.haspik
two cheese.f.sg may.f.sg to.suffice
'two portions of cheese may be enough'šnayim gbina yexolim le.haspik
c. *šnayim gbina yexol.ot le.haspik two cheese.f.sg. may.f.pl to.suffice 'two portions of cheese may be enough'

8. Classifiers and Restaurantese.

65.a. hai ga, ba bo
two chicken, three beef
b. hai ch-phe den, mot nuoc cam
two coffee black, one water orange (Vietnamese)
c. bia iik soong
beer more two (Thai) (Linguist List posting, reported by D. Gil, 1994)
66.a. hai dia ga, ba dia bo
two Cl chicken, three Cl beef
'two platefuls of chicken', 'two platefuls of beef'
b. hai tach ch-phe den, mot coc nuoc cam two Cl coffee black, one Cl water orange (Vietnamese)
c. bia iik soong khuat beermore two bottle/ Cl
67."bare" classifier +N combinations are always both $\#$ and Cl
borer@usc.edu
http://usc-rcf.usc.edu/~borer

[^0]: ${ }^{1}$ Definite direct objects in Hebrew, including proper names, are marked as such by an object marker absent in indefinites. As a result, there is no ambiguity for direct objects.

