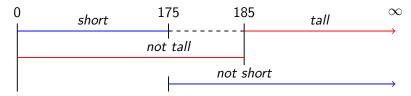
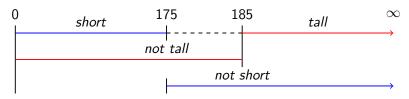
Adjectives and Negation: deriving Contrariety from Contradiction

Karen De Clercq & Guido Vanden Wyngaerd FWO/U Gent & KU Leuven

Linguistic Society of Belgium, Spring Meeting
Universiteit Antwerpen
5 May 2017


- The problem
- 2 Claim
- 3 Extents
- 4 Context-dependence
- **5** Deriving Contrariety
- **6** Syntax
- **7** A possible alternative
- 8 Conclusion

- The problem
- Claim
- 3 Extents
- 4 Context-dependence
- 5 Deriving Contrariety
- **6** Syntax
- A possible alternative
- Conclusion


- (1) a. Kurt is tall.
 - b. Kurt is short.
 - contrary opposition: (1a) and (1b)
 - cannot both be true
 - can both be false (when Kurt is neither tall nor short)

- (1) a. Kurt is tall.
 - b. Kurt is short.
 - contrary opposition: (1a) and (1b)
 - cannot both be true
 - can both be false (when Kurt is neither tall nor short)
- (2) a. Kurt is tall.
 - b. Kurt is not tall.
 - contradictory opposition: (2a) and (2b)
 - cannot both be true
 - cannot both be false

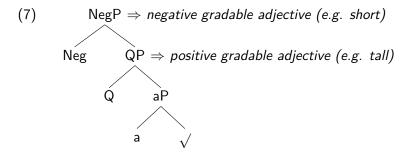
contrariety vs contradiction

contrariety vs contradiction

- contradiction
 - $A \cup B = U$
 - $A \cap B = \emptyset$
- contrariety
 - $A \cup B \neq U$
 - $A \cap B = \emptyset$

- (3) a. Kurt is tall.
 - b. Kurt is **not** tall.
- (4) a. Kurt is short.
 - b. Kurt is **not** short.
- (5) a. Kurt opened the door.
 - b. Kurt did **not** open the door.
 - not creates contradictory opposition

$$\begin{array}{c|cccc}
(6) & p & \neg p \\
\hline
1 & 0 \\
0 & 1
\end{array}$$


Law of the Excluded Middle (LEM)

$$p \lor \neg p$$

Law of Contradiction

$$\neg(p \land \neg p)$$

 De Clercq and Vanden Wyngaerd (2017): negative adjectives contain a Neg feature

bit.ly/2pcTxTG

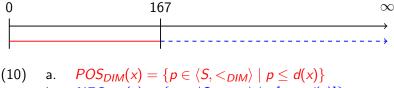
The Problem:

- why does negation sometimes give rise to contrary opposition, and sometimes to contradictory opposition?
- are there two flavours of negation?
- (8) a. not tall not \neg contradictory opposition b. short Neg ? contrary opposition

- The problem
- 2 Claim
- 3 Extents
- 4 Context-dependence
- 6 Deriving Contrariety
- **6** Syntax
- A possible alternative
- Conclusion

Claim

- There are no two flavours of negation
- Neg in negative adjectives is the same Neg as the one in not.
- Neg derives contradictory opposition.
- Contrary opposition (as in tall-short) is the result of an interplay of several factors:
 - interval or extent semantics, in particular the notion of a negative extent (Seuren 1978; 1984; von Stechow 1984; Kennedy 2001)
 - context-dependence


- 1 The problem
- Claim
- 3 Extents
- 4 Context-dependence
- Deriving Contrariety
- **6** Syntax
- A possible alternative
- Conclusion

- a scale $\langle S, <_{DIM} \rangle$ is a linearly ordered set of points along a dimension DIM (e.g. HEIGHT is the dimension of the tall-short scale).
- for any object x which can be ordered along some dimension DIM, there is a **degree function** d_{DIM} from x to a unique point on the scale $\langle S, <_{DIM} \rangle$. (e.g. $d_{HEIGHT}(Kurt) = 167$).
- an **extent** E on $\langle S, <_{DIM} \rangle$ is a nonempty subset of S with the following property:

(9)
$$\forall p_1, p_2 \in E, \forall p_3 \in S, [p_1 < p_3 < p_2 \rightarrow p_3 \in E]$$

any degree on the scale defines a positive extent and a negative extent.

b.
$$NEG_{DIM}(x) = \{ p \in \langle S, <_{DIM} \rangle \mid \neg [p \leq d(x)] \}$$

 any degree on the scale defines a positive extent and a negative extent.

(10) a.
$$POS_{DIM}(x) = \{ p \in \langle S, <_{DIM} \rangle \mid p \leq d(x) \}$$

b. $NEG_{DIM}(x) = \{ p \in \langle S, <_{DIM} \rangle \mid \neg [p \leq d(x)] \}$

(11)
$$d(Kurt) = 167$$

(12) a.
$$POS_{HEIGHT}(Kurt) = [0, 167]$$

b. $NEG_{HEIGHT}(Kurt) =]167, \infty[$

- Negative and positive extents are related by contradictory opposition:
- (13) $NEG_{DIM}(x) = \neg POS_{DIM}(x)$
- (14) $POS_{DIM}(x) \cup NEG_{DIM}(x) = \langle S, <_{DIM} \rangle$ $POS_{DIM}(x) \cap NEG_{DIM}(x) = \emptyset$

- a positive gradable adjective denotes a positive extent
- a negative gradable adjective denotes a negative extent

(15) a.
$$[tall(x)] = POS_{HEIGHT}(x)$$

b. $[short(x)] = NEG_{HEIGHT}(x)$

- (16) a. $[tall(Kurt)] = POS_{HEIGHT}(Kurt) = the extent to which Kurt is tall$
 - b. [short(Kurt)] = NEG_{HEIGHT}(Kurt) = the extent to which Kurt is not tall/short

- the Neg feature in negative adjectives is logical negation ¬
- Neg derives contradictory opposition

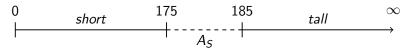
(17)
$$NegP =]167, \infty[\text{ (short)}$$

$$QP = [0, 167] \text{ (tall)}$$

$$Q = [0, 167] \text{ (tall)}$$

So where does the contrary nature of the opposition in tall-short come from?

- The problem
- Claim
- 3 Extents
- 4 Context-dependence
- Deriving Contrariety
- **6** Syntax
- **7** A possible alternative
- Conclusion


- (18) Kurt is tall.
 - does not mean: 'Kurt has a degree on the scale of HEIGHT'.
 - but: 'Kurt's degree on the scale of HEIGHT exceeds a contextually given standard'.

- (19) a. Kurt is tall for a Bolivian.
 - b. Kurt is not tall for a Swede.

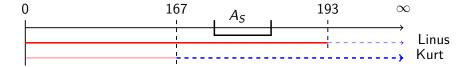
- (19) a. Kurt is tall for a Bolivian.
 - b. Kurt is not tall for a Swede.
- (20) a. Kurt is tall.
 - b. Kurt is not tall.

- (19) a. Kurt is tall for a Bolivian.
 - b. Kurt is not tall for a Swede.
- (20) a. Kurt is tall.
 - b. Kurt is not tall.
 - (20a) and (20b) cannot both be true, but only if the standard of comparison is kept constant!

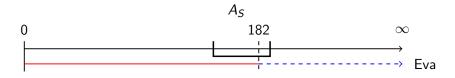
- the contextual standard
- = the interval of average height A
- = those degrees of HEIGHT that qualify as neither short, nor tall:

- the contextual standard
- = the interval of average height A
- = those degrees of HEIGHT that qualify as neither short, nor tall:

(21) a.
$$A_S = [175, 185]$$
 (Swedish men)
b. $A_B = [145, 155]$ (Bolivian men)

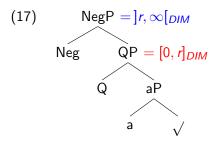

- 1 The problem
- 2 Claim
- 3 Extents
- 4 Context-dependence
- **5** Deriving Contrariety
- **6** Syntax
- A possible alternative
- Conclusion

- (22) Linus is tall.
 - = the extent to which Linus is tall includes A_S
 - $= POS_{HEIGHT}(Linus) \supset A_S$
- (23) For two extents X and Y, $X \subset Y \iff X \cup Y = Y$.


- (22) Linus is tall.
 - = the extent to which Linus is tall includes A_S
 - $= POS_{HEIGHT}(Linus) \supset A_S$
- (23) For two extents X and Y, $X \subset Y \iff X \cup Y = Y$.
- (24) d(Linus) = 193

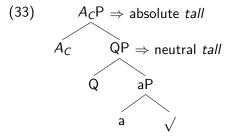
- (25) Kurt is short.
 - = the (negative) extent of Kurt's tallness includes A_S
 - = $NEG_{HEIGHT}(Kurt) \supset A_S$
- (26) d(Kurt) = 167

(27)
$$d(Eva) = 182$$



- (28) a. $POS_{HEIGHT}(Eva) \not\supset A_S$
 - b. $NEG_{HEIGHT}(Eva) \not\supset A_S$
- (29) a. [Eva is tall] = 0
 - b. [Eva is short] = 0

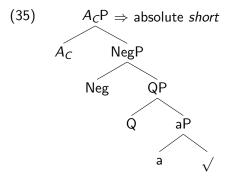
- contrariety follows from the truth conditions of tall and short, which are formulated in terms of
 - a positive extent for tall, and a negative extent for short
 - the dependence on a context-dependent average A_C, which is itself an extent


- 1 The problem
- Claim
- 3 Extents
- 4 Context-dependence
- Deriving Contrariety
- **6** Syntax
- A possible alternative
- Conclusion

Neg contributes contradictory opposition (recall (17) above)

- Two problems with this structure:
 - no contrariety
 - no context-dependence

- absolute tall
- (30) Kurt is tall.
 - neutral tall (no reference to a contextual standard)
- (31) a. How tall is Kurt?
 - b. Kurt is 1.5m tall
- (32) a. Kurt is (half/twice) as tall as Lisa.
 - b. Kurt is not as tall as Lisa.
 - c. Kurt is taller than Lisa.


absolute and neutral tall differ in the size of their tree

(34)
$$A_{C}P = \lambda x.POS_{DIM}(x) \supset A_{C}$$

$$QP = \lambda x.POS_{DIM}(x)$$

$$Q \qquad aP$$

$$a \qquad \sqrt{}$$

(36)
$$A_{C}P = \lambda x.NEG_{DIM}(x) \supset A_{C}$$

$$A_{C} \qquad NegP = \lambda x.NEG_{DIM}(x)$$

$$QP = \lambda x.POS_{DIM}(x)$$

$$Q \qquad aP$$

Outline

- 1 The problem
- Claim
- 3 Extents
- 4 Context-dependence
- Deriving Contrariety
- **6** Syntax
- A possible alternative
- Conclusion

(37) a.
$$A_C > (Neg) > Q > a > \sqrt{}$$

b. $(Neg) > A_C > Q > a > \sqrt{}$

(37) a.
$$A_C > (Neg) > Q > a > \sqrt{}$$

b. $(Neg) > A_C > Q > a > \sqrt{}$

(38) NegP
$$\Rightarrow$$
 absolute *short*

Neg A_C P \Rightarrow absolute *tall*
 A_C QP \Rightarrow neutral *tall*

Q aP

(39)
$$\operatorname{NegP} = \lambda x. \neg [POS_{DIM}(x) \supset A_C]$$

$$\operatorname{Neg} \qquad A_C P = \lambda x. POS_{DIM}(x) \supset A_C$$

$$\operatorname{QP} = \lambda x. POS_{DIM}(x)$$

$$\operatorname{Q} \qquad \operatorname{aP}$$

(40) a.
$$[[short (x)]] = \lambda x. \neg [POS_{DIM}(x) \supset A_C]$$

b. $[[short(Kurt)]] = POS_{DIM}(Kurt) \not\supset A_C$

• d(Kurt) = 167

- $POS_{DIM}(Kurt) \not\supset A_C$, hence (40b) comes out as true
- that is the desired result

$$(41) \quad [\![\mathsf{short}(\mathsf{Eva})]\!] = POS_{DIM}(\mathsf{Eva}) \not\supset A_C$$

• d(Eva) = 182

- $POS_{DIM}(Eva) \not\supset A_C$, hence (41) comes out true
- but it should come out false, because Eva is neither tall nor short
- (41) gives contradictory opposition with tall, not contrariness

 based on the semantics, we conclude that the correct functional sequence is as in (42a), not (42b):

(42) a.
$$A_C > \text{Neg} > Q > a > \sqrt{}$$

b. $\text{Neg} > A_C > Q > a > \sqrt{}$

Outline

- 1 The problem
- Claim
- 3 Extents
- 4 Context-dependence
- Deriving Contrariety
- **6** Syntax
- A possible alternative
- 8 Conclusion

- Neg in negative adjectives is contradictory negation
- Contrary opposition in antonymic pairs derives from
 - interval semantics
 - the notion of a negative extent, which enters into the truth conditions of negative adjectives
 - the presence of a contextually dependent average A_C .
- the relation between neutral tall and absolute tall is one of the size of the syntactic tree.

References

- De Clercq, K. and Vanden Wyngaerd, G. (2017). "Why Affixal Negation is Syntactic". In A. Kaplan, A. Kaplan, M. McCarvel and E. Rubin, eds., Proceedings of WCCFL 34. Sommerville, MA: Cascadilla Press. 151–158.
- Kennedy, C. (2001). "On the monotonicity of polar adjectives". In J. Hoeksema, H. Rullman, V. Sanchez-Valencia and T. v. d. Wouden, eds., Perspectives on Negation and Polarity Items, Amsterdam: John Benjamins. 201–221.
- Seuren, P. (1978). "The structure and selection of positive and negative gradable adjectives". In D. Farkas, W. Jacobsen and K. Todrys, eds., *Papers* from the Parasession on the Lexicon, Chicago: Chicago Linguistic Society. 336–346.
- Seuren, P. (1984). "The Comparative Revisited". *Journal of Semantics* 3, 109–141.
- von Stechow, A. (1984). "My reaction to Cresswell's, Hellan's and Seuren's comments". *Journal of Semantics* 3, 183–199.