UBCs under embedding

Bart Geurts Bob van Tiel

- (1) Some of the goats are sick. $\sim \mathbf{Bel}_{S} \neg (\text{all the goats are sick})$
 - Pragmatic view
 This inference is due to a quantity implicature.
 - Conventionalist view
 - This is not an inference at all.
 - Rather, *some* is read, in effect, as "some but not all".
 - The origin of this reading is either lexical or syntactic.

- (1) Julius believes that some of the goats are sick.
 - a. $\mathbf{Bel}_{S}(\mathbf{Bel}_{J}(\neg(\text{all the goats are sick})))$
 - b. $\mathbf{Bel}_{S}(\neg \mathbf{Bel}_{J}(\text{all the goats are sick}))$
 - (1a) is an inference we would like to account for.
 - (1b) is the best we can do on an orthodox Gricean account.

- Could it be the case that, for all S knows, Julius believes that all the goats are sick, i.e. Bel_S(Bel_J(all the goats are sick))?
- Presumably not, for then S should have said, "Julius believes that all the goats are sick." Hence, ¬Bel_S(Bel_J(all the goats are sick)).
- Suppose that S is competent with respect to the proposition that Bel_J(all the goats are sick): Bel_S(Bel_J(all the goats are sick)) ∨ Bel_S(¬Bel_J(all the goats are sick)).
- 4. If so, it follows that $\mathbf{Bel}_{S}(\neg \mathbf{Bel}_{J}(\text{all the goats are sick}))$.

- 4. $\mathbf{Bel}_{S}(\neg \mathbf{Bel}_{J}(\text{all the goats are sick})).$
- 5. Suppose it is common ground that *Julius* is competent with respect to the proposition that all the goats are sick: $\mathbf{Bel}_{J}(\text{all the goats are sick}) \vee \mathbf{Bel}_{J} \neg (\text{all the goats are sick})).$
- 6. Then it follows that $\mathbf{Bel}_{S}(\mathbf{Bel}_{J}\neg(\text{all the goats are sick}))$.

- (1) Fred ordered sashimi or some of the sushi. \sim Fred didn't order all the sushi.
- (2) Fred knows that Betty got many of the answers right.
 → Betty didn't get all the answers right.
- (3) At least one of the girls got most of the answers right.
 → At least one of the girls didn't get all the answers right.
 ✓ None of the girls got all the answers right.
- © These problems have been solved, too.

- (1) If you take salad OR dessert, you pay \$20; but if you take BOTH there is a surcharge.
- (2) Exactly three students did MOST of the exercises; the rest did them ALL.
- (3) It is not just that you CAN write a reply. You MUST.

Pragmatic view:

- These are not quantity implicatures.
- Rather, (1)-(3) require truth-conditional narrowing of or, most, and can.
- These construals are *forced* by the context.

- On the pragmatic view, there are two mechanisms that variously underwrite UBCs: quantity implicature and truth-conditional narrowing.
- However: the conventionalist view agrees with this.
- (1) Barney stole some of the tarts.
 - a. $\mathbf{Bel}_{\mathbf{S}} \neg (\text{Barney stole all the tarts})$ (strong)
 - b. $\neg \mathbf{Bel}_{S}(\text{Barney stole all the tarts})$

- 1. the nature of truth-conditional narrowing
- 2. the division of labour between truth-conditional narrowing and quantity implicature

- (1) When Betty DRINKS, she DRINKS.
- (2) Julius isn't RICH: he's RICH.

- 1. The pragmatic view
 - a. Quantity implicature is the normal case.
 - b. Narrowing is a marked option in any context.
- 2. The conventionalist view
 - a. Narrowing is always a freely available option, and therefore UBCs "occur systematically and freely in arbitrarily embedded positions." (Chierchia et al., to appear)
 - b. This may hold even for downward-entailing and non-monotone contexts.

The critical difference is that between [1b] and [2a].

- (3) Only 6 of the villagers have rabbits or chickens.

 ☆ Only 6 of the villagers have rabbits or chickens but not both.

Experimental evidence against conventionalism

(Geurts & Pouscoulous 2009)

\bowtie No embedded UBCs.

Experimental evidence against conventionalism

(Geurts & Pouscoulous 2009)

\bowtie No embedded UBCs.

- 1. *Principle of Charity* (Wilson, Quine, Davidson) Try to interpret the speaker's utterance in such a way that it is true.
- 2. Preference for Truth (Chemla & Spector, Sauerland) If a sentence is ambiguous between two readings R₁ and R₂, where R₂ asymmetrically entails R₁, then naive subjects will only perceive reading R₁.
- [2] is not the same thing as [1].
- Unlike [1], [2] is not plausible at all.
- [2] is contradicted by a variety of data.

Experimental evidence for embedded UBCs?

(Chemla & Spector 2011)

Target sentence: "Every letter is connected to some of its circles."

	P5	P6	P7
No circles connected	0	0	0
All circles connected	4	2	0
Only some circles connected	2	4	6

	P1	P2	$\mathbf{P3}$	P4	P5	P6	$\mathbf{P7}$
No circles connected	6	4	2	0	0	0	0
All circles connected	0	0	0	6	4	2	0
Only some circles connected	0	2	4	0	2	4	6
Mean rating	0	12	24	44	63	73	99

- C&S take the difference between P5/6 and P7 to show that embedded UBCs were derived some of the time.
- But where does this leave the rest of the data?
- All these data can be explained in terms of typicality.

- C&S's informants saw every picture up to four times.
- No fillers were used.
- These two features could have invited comparisons between items.
- In particular, it could be that P7-items depressed the ratings of subsequent P5/6-items.

	P5	P6
Trials in $C & S$'s experiment following P7	63	73
Trials in $C \& S$'s experiment preceding P7	78	96
Minimalist replication	93	100

- These findings confirm that the difference between P5/6 and P7 is an artifact of C&S's experimental design.
- This kills C & S's argument in favour of a conventionalist approach to UBCs.
- However, C&S's data are still interesting in their own right, and call for an explanation.

Typicality effects with all

All the circles are black.

Some of the circles are black.

 $\rho_{\text{SOME A B}}(S) = 1 - dist(S - P)^2$

Chemla & Spector's data explained

	P1	P2	$\mathbf{P3}$	P4	P5	P6	P7
No circles connected	6	4	2	0	0	0	0
All circles connected	0	0	0	6	4	2	0
Only some circles connected	0	2	4	0	2	4	6
Mean rating	0	12	24	44	63	73	99

(1) Every letter is connected with some of its circles.

• Our analysis of ρ_{SOME} entails that: $\rho_B(\text{only some circles connected})$ $> \rho_B(\text{all circles connected})$ $> \rho_B(\text{no circle connected})$

• When combined with our analysis of ρ_{EVERY} , this yields a near-perfect fit with C & S's data (r = .99, p < .001).

- C&S's data offer no support for the claim that UBCs occur "systematically and freely" in embedded positions.
- We have learned an important methodological lesson:
 - What looks like a UBC doesn't have to be one.
- We have to distinguish:
 - conversational implicatures (e.g. quantity implicatures)
 - truth-conditional content (e.g. narrowing)
 - typicality effects
- Conceptually, these notions seem to be clearly distinct, but empirically, things aren't perhaps so clear. E.g.,
 - (1) Fred has a wonderful secretary.

- (1) There was only one key that fit some of the locks.
- (2) There was only one key that fit some but not all of the locks.
 - \equiv One key fit some but not all of the locks, and all the others fit either none or all of the locks.
- (3) There was only one key that fit SOME of the locks.

There are exactly two circles that are connected with some of the squares.

☞ No evidence for embedded UBCs.

(1) There is exactly one letter connected with some of its circles.

- With this picture, (1) received a rating of 73%, which leads C&S to suggest that there may be a *general* preference for deriving UBCs.
- Alternative explanation: this result is due to a *visual contrast* within the picture.

Experimental evidence for the alternative explanation

(1) Exactly one letter is connected to some of its circles.

	HICON-list	LoCon-list
False	32	30
HICON	64	—
LoCon	_	37

- These data confirm our hypothesis.
- Besides, if Chemla & Spector's view was correct, how could Geurts & Pouscoulous's data be accounted for?
- Again, Chemla & Spector's data offer no support for the claim that UBCs occur "systematically and freely" in embedded positions.

- Bart Geurts and Bob van Tiel: Scalar expressions under embedding. To appear in *Semantics and pragmatics*.
- Bob van Tiel: Embedded scalars and typicality. To appear in the *Journal of semantics*.