#### Sluicing as anaphora to a scope remnant

Chris Barker, NYU

Synopsis: I argue that sluicing is anaphora to a continuation, that is, to a constituent missing a piece. When a DP takes scope over a clause, it creates the right kind of antecedent. The prediction is that sluicing is sensitive to scope islands, but not to overt-movement islands.

### Quantifier Raising: a logical inference?

- Montague 1973: Quantifying In: (2661 citations)
- May 1978,1985: Quantifier Raising (QR): (2866 citations)





**Richard Montague** 

2/42



Robert May

Today's question: *How to incorporate QR into a genuine logic?* 

Lambek's substructural logic NL for natural language 4/42

Without Exchange, ' $\rightarrow$ ' splits into ' $\backslash$ ' and '/'

- Formulas:  $\mathscr{F} = \mathsf{DP} \mid \mathsf{S} \mid \mathscr{F} \backslash \mathscr{F} \mid \mathscr{F} / \mathscr{F}$
- Structures:  $\mathscr{S} = \mathscr{F} | \mathscr{S} \cdot \mathscr{S}$
- Sequents:  $\mathscr{S} \vdash \mathscr{F}$
- Logical rules:

$$\frac{\Gamma \vdash A \quad \Sigma[B] \vdash C}{\Sigma[\Gamma \cdot A \setminus B] \vdash C} \setminus L \qquad \qquad \frac{A \cdot \Gamma \vdash B}{\Gamma \vdash A \setminus B} \setminus R$$
$$\Gamma \vdash A \quad \Sigma[B] \vdash C \qquad \qquad \Gamma \cdot A \vdash B$$

$$\frac{1 \vdash A \quad \Sigma[B] \vdash C}{\Sigma[B/A \cdot \Gamma] \vdash C} / L \qquad \qquad \frac{1 \cdot A \vdash B}{\Gamma \vdash B/A} / R$$

Structural rules: none! (Cut baked in)

#### How context notation works in inference rules

- $\bullet$  Capital Greek letters (  $\Delta,$   $\Gamma,$   $\Sigma)$  stand for complete structures
- $\bullet$  ' $\Sigma[\Delta]'\equiv\Sigma$  containing a distinguished instance of  $\Delta$
- $\Sigma[\Gamma \cdot A \setminus B]$ ' matches the structure below in two ways:
  - $[Ann \cdot DP \setminus S] \cdot (and ((the \cdot man) \cdot cried))$  $- (Ann \cdot left) \cdot (and \cdot [(the \cdot man) \cdot DP \setminus S])$



5/42

Joachim Lambek

An example derivation of Ann saw Bill

(2)

(1)  $\frac{\frac{\mathsf{DP}\vdash\mathsf{DP}}{\mathsf{DP}\cdot\mathsf{DP}\backslash\mathsf{S}\vdash\mathsf{S}}\backslash L}{\frac{\mathsf{DP}\cdot((\mathsf{DP}\backslash\mathsf{S})/\mathsf{DP}\cdot\mathsf{DP})\vdash\mathsf{S}}{\mathsf{Ann}\cdot(\mathsf{saw}\cdot\mathsf{Bill})\vdash\mathsf{S}}L^{\mathsf{EX}}}$ 



(3) a. Curry-Howard: L rules correspond to function applicationb. saw(bill)(ann)

6/42 Adding a structural rule for QR

Associativity:  $p \cdot (q \cdot r) \equiv (p \cdot q) \cdot r$ 



Quantifier Raising: 
$$\Sigma[\Delta] \equiv \Delta \cdot \lambda x \Sigma[x]$$



NL<sub>QR</sub>: NL with Quantifier Raising

- Variables:  $\mathscr{V} = x | y | z | ...$ • Formulas:  $\mathscr{F} = \mathsf{DP} | \mathsf{S} | \mathscr{F} \backslash \mathscr{F} | \mathscr{F} / \mathscr{F}$ • Structures:  $\mathscr{S} = \mathscr{F} | \mathscr{S} \cdot \mathscr{S} | \mathscr{V} | \lambda \mathscr{V} \mathscr{S}$
- Sequents:  $\mathscr{S} \vdash \mathscr{F}$
- Logical rules:

$$\frac{\Gamma \vdash A \quad \Sigma[B] \vdash C}{\Sigma[\Gamma \cdot A \setminus B] \vdash C} \setminus L \qquad \qquad \frac{A \cdot \Gamma \vdash B}{\Gamma \vdash A \setminus B} \setminus R$$
$$\frac{\Gamma \vdash A \quad \Sigma[B] \vdash C}{\Sigma[B/A \cdot \Gamma] \vdash C} / L \qquad \qquad \frac{\Gamma \cdot A \vdash B}{\Gamma \vdash B/A} / R$$

• Structural rule:  $\Sigma[\Delta] \equiv_{QR} \Delta \cdot \lambda x \Sigma[x]$ 

Linear: !1 var per lambda; x chosen fresh

## Works great!

$$\frac{Ann \cdot (saw \cdot DP) \vdash S}{DP \cdot \lambda x (Ann \cdot (saw \cdot x)) \vdash DP \setminus S} \frac{QR}{\setminus R} \frac{\lambda x (Ann \cdot (saw \cdot x)) \vdash DP \setminus S}{S \setminus S} \frac{A}{S \vdash S} \frac{1}{\sum (DP \setminus S) \cdot \lambda x (Ann \cdot (saw \cdot x)) \vdash S} LEX} \frac{S/(DP \setminus S) \cdot \lambda x (Ann \cdot (saw \cdot x)) \vdash S}{Ann \cdot (saw \cdot everyone) \vdash S} QR$$

...including the Curry-Howard labeling for the semantics:

$$\frac{\operatorname{ann} \cdot (\operatorname{saw} \cdot y) \vdash \operatorname{saw} y \operatorname{ann}}{\frac{y \circ \lambda x (\operatorname{ann} \cdot (\operatorname{saw} \cdot x)) \vdash \operatorname{saw} y \operatorname{ann}}{Q \circ \lambda x (\operatorname{ann} \cdot (\operatorname{saw} \cdot x)) \vdash \lambda y \operatorname{.saw} y \operatorname{ann}} \frac{\langle R}{\langle R}}{Q \circ \lambda x (\operatorname{ann} \cdot (\operatorname{saw} \cdot x)) \vdash Q (\lambda y \operatorname{.saw} y \operatorname{ann})} / L}{\frac{\operatorname{everyone} \circ \lambda x (\operatorname{ann} \cdot (\operatorname{saw} \cdot x)) \vdash Q (\lambda y \operatorname{.saw} y \operatorname{ann})}{\operatorname{ann} \cdot (\operatorname{saw} \cdot \operatorname{everyone}) \vdash \operatorname{everyone} (\lambda y \operatorname{.saw} y \operatorname{ann})}} \frac{\operatorname{LEX}}{Q \cap \lambda y \operatorname{.saw} y \operatorname{ann}} = \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{ann}} \left( \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{ann}} \right) = \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{ann}} \left( \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{ann}} \right) = \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{ann}} \left( \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{ann}} \right) = \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{ann}} \left( \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{ann}} \right) = \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{ann}} \left( \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{ann}} \right) = \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{ann}} \left( \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{ann}} \right) = \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{ann}} \left( \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{ann}} \right) = \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{ann}} \left( \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{.saw} y \operatorname{.saw}} \right) = \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{.saw} y \operatorname{.saw}} \left( \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{.saw} y \operatorname{.saw}} \right) = \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{.saw} y \operatorname{.saw} y \operatorname{.saw} y \operatorname{.saw}} \left( \operatorname{LEX}_{Q \cap \lambda y \operatorname{.saw} y \operatorname{$$



9/42

Michael Moortgat



Compare with tangram diagrams in Moortgat 1996b

11/42

#### Parasitic scope: sentence-internal same

(8) a. The same waiter served everyone. [Stump, Heim]b. There is a (unique) waiter x such that x served everyone.



Details in Barker 2007; not derivable in MM96

#### Parasitic scope in tree format





Grey constituent  $\sim$  string with two points of discontinuity

## 14/42 Other phenomena with a parasitic scope analysis 16/42

- (10) a. Anaphora: Morrill, Fadda & Valentín 2011
  - b. *he*: (DP\\S)//(DP\\(DPS))
  - c. Everyone thinks he is smart.
  - d. everyone  $\circ$  (he  $\circ \lambda y \lambda x (x \cdot (\text{thinks} \cdot (y \cdot (\text{is} \cdot \text{smart})))))) \vdash S$
- (11) a. Average: Kennedy and Stanley 2009
  - b. The average American has 2.3 kids.
  - c.  $2.3 \circ (\operatorname{avg} \circ \lambda f \lambda n((\operatorname{the} \cdot (f \cdot \operatorname{Am'n})) \cdot (\operatorname{has} \cdot (n \cdot \operatorname{kids}))))$
- (12) a. Fancy coordination: Kubota & Levine (various papers)
  - b. I said the same thing to Terry on Mon and to Kim on Tue.
  - c.  $\neq$  I said the same thing to Terry on Monday and I said the same thing to Kim on Tuesday.
- (13) a. Remnant comparatives: Pollard and Smith 2013b. Ann owes Bill more than Clara.

Kubota and Levine's workshop in week 2!

#### **Recursive scope**

- (14) a. Solomon 2009
  - b. Ann and Bill know [some of the same people].
  - c. There is a set of people X such that Ann knows some of X and Bill knows some of X.

17/42

- d. No guarantee that Ann and Bill know anyone in common!
- e. Solomon: *same*:((DP\\S)//(DP\\(DP\\S)))//(A\\DP)

they  $\circ$  ((same  $\circ \lambda x$ (some  $\cdot$  (of  $\cdot$  (the  $\cdot (x \cdot \text{people})))) \circ \lambda zy(y \cdot (\text{know} \cdot z))) \vdash S$   $\lambda$ they  $\lambda y(y \cdot (\text{know} \cdot (\text{same} \circ \lambda x(\text{some} \cdot (\text{of} \cdot (\text{the} \cdot (x \cdot \text{people}))))))) \vdash S$ (15)they  $\cdot$  (know  $\cdot$  (same  $\circ \lambda x$ (some  $\cdot$  (of  $\cdot$  (the  $\cdot (x \cdot \text{people})))))) \vdash S$ they  $\cdot$  (know  $\cdot$  (some  $\cdot$  (of  $\cdot$  (the  $\cdot$  (same  $\cdot$  people)))))  $\vdash$  S

lancet liver fluke (Dicrocoelium dendriticum)

### Sluicing as anaphora to an anti-constituent

- (1) Someone left, but I don't know [who \_\_].
- (2) [Someone<sub>INNER ANTECEDENT</sub> left]<sub>OUTER ANTECEDENT</sub>, but I don't know [who<sub>WH</sub> SLUICEGAP]<sub>SLUICE</sub>.

```
sluice = wh-phrase + (antecedent-clause - inner-antecedent)
      = who + ([someone left] - someone)
```

```
= who + [__ left]
```

- The outer antecedent with the inner antecedent removed
- The remnant of the outer antecedent after the inner antecedent has taken scope (i.e., a nuclear scope)
- The complement of the inner antecedent with respect to the outer antecedent, i.e., an anti-constituent
- The delimited continuation of the inner antecedent wrt to the outer antecedent

Three comparison analyses: structured silence?

Some analyses of sluicing assume that the sluice ellipsis site contains a silent object that has internal structure:

- LF copying: Chung, Ladusaw and McCloskey 1995
  - Re-use ("recycle") the Logical Form of the antecedent
  - Builds silent structure inside sluicegap
- PF Deletion Merchant 2001
  - Build any IP you want to. Move the WH out; delete the remainder if there is a certain kind of semantic equivalence with the antecedent

Other analyses propose that sluicing is a kind of anaphora:

- Anaphora: Jäger 2005
  - Antecedent: clause containing an indefinite
  - No internal structure to silence
- 18/42 Three puzzles to use for comparing analyses **Case matching**: the case of the WH element in the sluice

20/42

- must match the case of the inner antecedent.
  (4) Er will jemandem schmeicheln, aber sie wissen nicht, {\*wen / wem}. he wants someone.DAT flatter but they know not {who.ACC / who.DAT} 'He wants to flatter someone. but they don't know who.
- (5) Er will jemanden loben, aber sie wissen nicht, {wen / \*wem}. he wants someone.ACC praise but they know not {who.ACC / who.DAT} 'He wants to praise someone, but they don't know who.
- **Island insensitivity**: the inner antecedent can be embedded within an island for WH-movement.
- (6) He wants a detailed list, but I don't know how detailed [he wants a \_\_ list] (\* if pronounced)
- (7) Bo talked to the people who discovered something, but we don't know what

[Bo talked to the people who discovered \_\_\_].

- **Sprouting**: sometimes there is no overt inner antecedent
- (10) John left, but I don't know when.

#### Claims about silent structure: LF recycling

21/42

22/42

Chung, Ladusaw and McCloskey 1995:240-6:

IP **recycling** can be thought of as copying the LF of some discourseavailable IP into the empty IP position. ... In [some cases], the recycled IP does not come supplied with a syntactic position for the displaced [WH] constituent to bind. When such a position does not already exist, it must be created, by an additional part of the recycling process we call **sprouting**.

- Case matching: OK: The WH is base-generated, and must bind (be coindexed with) some DP inside the reconstructed sluice. This kind of binding must be sensitive to case.
- Island insensitivity: 🙂 Being bound is not island-sensitive.
- Sprouting: Well... As long as the reconstructed LF obeys all of the selectional and other syntactic constraints of antecedent, sprouting is ok (see quotation above).

#### Claims about silent structure: PF Deletion

Merchant 2001 (PF Deletion): Sluicing involves movement of a wh-phrase out of a sentential [IP or FocP] constituent... followed by deletion of that node.

**Mutual entailment restriction:** clause can be deleted iff the antecedent and the deletion target mutually entail each other, modulo existential focus-closure.

- Case matching: 🙂 Since the WH originated in-situ, then moved, it will show all of the case matching properties of ordinary wh-movement.
- Island insensitivity: Well... Must decide that remaining unpronounced rescues island violations
- Sprouting: <sup>(c)</sup> There is no such thing as sprouting distinct from other types of sluicing. Generate any sluice you want; as long as it mutually entails the existential focus closure of the antecedent, no problem.

$$\frac{X \Rightarrow M : A}{Y, X; Z, y : B, W \Rightarrow N : C}{Y, X, Z, w : B|A, W \Rightarrow N[M/x][wM/y] : C} [|L]$$
$$\frac{X, x : A, Y \Rightarrow M : B}{\overline{X, y : A|C, Y \Rightarrow \lambda z. M[yz/x] : B|C}} [|R]$$

$$\frac{X, x: A, Y \Rightarrow M: B}{X, y: C \rightsquigarrow A, Y \Rightarrow \lambda z. M[yz/x]: C \rightsquigarrow B} [\rightsquigarrow]$$

- a. A cup moved
- b.  $\mathbf{a} \lambda P x_{Px} \cdot x : (np \rightsquigarrow np)/n$
- $\mathrm{c.} \quad y: (np \leadsto np)/n, z:n, w: np \backslash s \Rightarrow \lambda u.w(yzu): np \leadsto s$
- a. which cup moved

b. which 
$$-q/(s \uparrow np)/n$$

which  $-q|(np \rightsquigarrow s)/n : \lambda PQ?x.Px \land Q^+x$ 

Jäger's 2001, 2005 anaphoric approach, cont'd 24/42

- Indefinites contribute an unbound variable.
- Presence of unbound variables must be registered on category of containing clause (e.g., 'S<sup>DP</sup>').
- WH words (e.g., *who*) ambiguous between normal version and a sluice version anaphoric to S<sup>DP</sup>.

Status with respect to the three puzzles:

- Case matching: OK: Some anaphora must be sensitive to case  $(S^{DP_{ACC}})$ .
- Island insensitivity: 🙂 unbound variables insensitive to islands.
- Sprouting: Oops! Analysis requires overt indefinite inner antecedent.
- (8) Even overt inner antecedents need not be indefinite: [John or Mary] left, but I don't know which one. (AnderBois)

Voice alternations...

#### Preview of the account here

- Inner antecedent must take scope over the antecedent clause.
- Sluicegap silent proform anaphoric to scope remnant
- Case matching: OK: Some anaphora must be sensitive to case.
- Island insensitivity: 🙂 scopability independent of syntactic islands
- Sprouting: 🙂 Reasonable assumptions explain sprouting

#### Summary of theoretical landscape:

|                          | Case     | Island        |           |
|--------------------------|----------|---------------|-----------|
|                          | matching | insensitivity | Sprouting |
| LF Copying               | OK       | $\bigcirc$    | Well      |
| PF Deletion              | $\odot$  | Well          | $\odot$   |
| Indef. Anaphora          | OK       | $\odot$       | Oops!     |
| Anaphora to continuation | OK       | $\odot$       | $\odot$   |

### Quantificational binding as parasitic scope

An analysis inspired by a parallel proposal in Morrill, Fadda & Valentín 2007:52:  $he = \lambda \kappa \lambda x. \kappa xx : (DP \S) // (DP \S)).$ 

$$\frac{\frac{\mathsf{DP} \cdot (\mathsf{said} \cdot (\mathsf{DP} \cdot \mathsf{left})) \vdash \mathsf{S}}{\mathsf{DP} \circ \lambda x (x \cdot (\mathsf{said} \cdot (\mathsf{DP} \cdot \mathsf{left}))) \vdash \mathsf{DP} \backslash \mathsf{S}} \stackrel{\mathbb{N}R}{\mathbb{N}}}{\frac{\lambda x (x \cdot (\mathsf{said} \cdot (\mathsf{DP} \cdot \mathsf{left}))) \vdash \mathsf{DP} \backslash \mathsf{S}}{\lambda y \lambda x (x \cdot (\mathsf{said} \cdot (y \cdot \mathsf{left}))) \vdash \mathsf{DP} \backslash \mathsf{S}} \stackrel{\mathbb{N}R}{\cong} \\ \frac{\frac{\mathsf{DP} \circ \lambda y \lambda x (x \cdot (\mathsf{said} \cdot (y \cdot \mathsf{left}))) \vdash \mathsf{DP} \backslash (\mathsf{DP} \backslash \mathsf{S})}{\lambda y \lambda x (x \cdot (\mathsf{said} \cdot (y \cdot \mathsf{left}))) \vdash \mathsf{DP} \backslash (\mathsf{DP} \backslash \mathsf{S})} \stackrel{\mathbb{N}R}{\mathbb{N}} \\ \frac{\frac{\mathsf{everyone} \circ ((\mathsf{DP} \backslash \mathsf{S}) / (\mathsf{DP} \backslash (\mathsf{DP} \backslash \mathsf{S})) \circ \lambda y \lambda x (x \cdot (\mathsf{said} \cdot (y \cdot \mathsf{left}))) \vdash \mathsf{S}}{\mathsf{everyone} \circ (\mathsf{DP} \backslash \mathsf{S}) / (\mathsf{DP} \backslash (\mathsf{DP} \backslash \mathsf{S})) \circ \lambda y \lambda x (x \cdot (\mathsf{said} \cdot (y \cdot \mathsf{left}))) \vdash \mathsf{S}} \underset{\mathsf{LEX}}{\mathsf{everyone} \circ (\mathsf{he} \circ \lambda y \lambda x (x \cdot (\mathsf{said} \cdot (\mathsf{he} \cdot \mathsf{left}))) \vdash \mathsf{S}} \underset{\mathsf{everyone} \cdot (\mathsf{said} \cdot (\mathsf{he} \cdot \mathsf{left}))) \vdash \mathsf{S}}{\mathsf{everyone} \cdot (\mathsf{said} \cdot (\mathsf{he} \cdot \mathsf{left})) \vdash \mathsf{S}} \underset{\mathsf{everyone} \cdot (\mathsf{said} \cdot (\mathsf{he} \cdot \mathsf{left}))) \vdash \mathsf{S}}{\mathsf{everyone} \cdot (\mathsf{said} \cdot (\mathsf{he} \cdot \mathsf{left})) \vdash \mathsf{S}} \underset{\mathsf{everyone} \cdot (\mathsf{said} \cdot (\mathsf{he} \cdot \mathsf{left})) \vdash \mathsf{S}}{\mathsf{everyone} \cdot (\mathsf{said} \cdot (\mathsf{he} \cdot \mathsf{left})) \vdash \mathsf{S}} \underset{\mathsf{everyone} \cdot (\mathsf{said} \cdot (\mathsf{he} \cdot \mathsf{left})) \vdash \mathsf{S}}{\mathsf{E}}}{\mathsf{veryone} \cdot (\mathsf{said} \cdot (\mathsf{he} \cdot \mathsf{left})) \vdash \mathsf{S}} \underset{\mathsf{everyone} \cdot (\mathsf{said} \cdot (\mathsf{he} \cdot \mathsf{left})) \vdash \mathsf{S}}{\mathsf{S}}$$

 $everyone((\lambda \kappa \lambda x. \kappa xx)(\lambda y \lambda x. said(left x) y))$ = everyone(\lambda z. said(left z) z) = (\lambda P \forall x. Px)(\lambda z. said(left z) z) = \forall x. said(left x) x)

## Verb phrase ellipsis (VPE) as parasitic scope

DP*he*:  $\lambda \kappa \lambda x. \kappa xx : (DP\S) // (DP\(DP\S))$ VPE:  $\lambda \kappa \lambda x. \kappa xx : ((DP\S) S) // ((DP\S) ((DP\S)))$ 

(13) a. John left or Bill did. **Basic VPE**  
b. 
$$\frac{|\text{eft} \circ (\text{VPE} \circ \lambda y \lambda x ((\text{John} \cdot x) \cdot (\text{or} \cdot (\text{Bill} \cdot y)))) \vdash S}{\frac{|\text{eft} \circ \lambda x ((\text{John} \cdot x) \cdot (\text{or} \cdot (\text{Bill} \cdot \text{VPE}))) \vdash S}{((\text{John} \cdot |\text{eft}|) \cdot (\text{or} \cdot (\text{Bill} \cdot \text{VPE}))) \vdash S} \equiv$$

(14) a. John said he left or Bill did. Sloppy coreference  $\frac{DP \circ (he \circ \lambda y \lambda x(x \cdot (\text{said} \cdot (y \cdot \text{left})))) \vdash S}{DP \circ \lambda x(x \cdot (\text{said} \cdot (he \cdot \text{left})))) \vdash S} \equiv$ 

b. 
$$\frac{\frac{\mathsf{DP} \circ \mathcal{K}(\mathbf{x} \cdot (\mathsf{said} \cdot (\mathsf{he} \cdot \mathsf{left}))) \vdash \mathsf{S}}{\mathsf{DP} \cdot (\mathsf{said} \cdot (\mathsf{he} \cdot \mathsf{left})) \vdash \mathsf{S}} \equiv \frac{\mathsf{DP} \cdot (\mathsf{said} \cdot (\mathsf{he} \cdot \mathsf{left})) \vdash \mathsf{S}}{\mathsf{said} \cdot (\mathsf{he} \cdot \mathsf{left}) \vdash \mathsf{DP} \setminus \mathsf{S}}$$

- c. Use this VP in place of *left* in (13); semantic value  $\lambda x.said(left x) x$
- (15) a. John said he left or Bill did. **Strict coreference** John  $\circ$  (he $\lambda y \lambda x$ ((x  $\cdot$  (said  $\cdot$  (y  $\cdot$  left)))(or  $\cdot$  (Bill  $\cdot$  VPE))))  $\vdash$  S

b.  $\frac{\mathsf{John} \circ \lambda x((x \cdot (\mathsf{said} \cdot (\mathsf{he} \cdot \mathsf{left})))(\mathsf{or} \cdot (\mathsf{Bill} \cdot \mathsf{VPE}))) \vdash \mathsf{S}}{(\mathsf{John} \cdot (\mathsf{said} \cdot (\mathsf{he} \cdot \mathsf{left})))(\mathsf{or} \cdot (\mathsf{Bill} \cdot \mathsf{VPE})) \vdash \mathsf{S}} \equiv$ 

c. Continue the proof by using the VPsaid y left to bind VPE.

## Basic sluicing

25/42

26/42

28/42

SLUICEGAP:  $\lambda k \lambda P.kPP$  :((DP\S)\S)//((DP\S)\(DP\S)\S)) (16) Someone left, but I don't know who SLUICEGAP.

The continuation of *someone* relative to the clause *someone left* (i.e.,  $\lambda x(x \cdot \text{left})$ ) provides the semantic value for the sluice gap:



### Good prediction: scope of inner antecedent

CLM p. 255 [my paraphrase]:

Inner antecedents must take scope over the rest of the antecedent.

- (17) Each student wrote a paper on a Mayan language, but I don't remember which one. [CLM]
- (18) Someone saw everyone, but I don't know who.
- (16) Ann photographed a woman and/\*or a building yesterday, but I don't know who
- (17) \*No one spoke to a neighbor of his, but I don't know who.
- (18) Every teacher called more than two students. [\*more-than-two > every]
- (19) Every teacher called more than two students, but I don't know who.

# Good prediction: no syntactic island sensitivity

- The relationship between the inner antecedent and the antecedent clause is scopability, not wh-extractability.
- Indefinites in particular can scope out of syntactic islands.

(19) who:  $Q/(DP_{ACC} S)$  $Q/(DP_{DAT} S)$ 

As in Jäger 2001, given an anaphoric type-logical treatment, "Sluicing is correctly predicted to be insensitive to syntactic islands, but sensitive to morphological features of the antecedent."

**Full accounting principle of category formation:** As in Jacobson (e.g., 1999), the category of a larger expression registers information about its missing pieces: there is no hiding of information in the derivational history.

#### Sprouting: a simple case

Suggested independently to me by Lucas Champollion and Dylan Bumford: If (some) WH phrases were S modifiers (rather than VP modifiers), the analysis would extend to sprouting immediately.

- (21) a. I want to know why John left.
  - b. I want to know why Mary said John left. (unambiguous)
  - c. why: S/S; whysluicegap: (S S)/(S (S S))
  - d. Target: Mary said John left, but I don't know why.

 $(\mathsf{John} \cdot \mathsf{left}) \circ (\mathsf{WHYSLUICEGAP} \circ \lambda y \lambda x ((\mathsf{Mary} \cdot (\mathsf{said} \cdot x)) \cdot (\mathsf{bidk} \cdot (\mathsf{why} \cdot y))) \vdash \mathsf{S}_{\mathsf{V}}$ 

 $\frac{(\mathsf{John} \cdot \mathsf{left}) \circ \lambda x((\mathsf{Mary} \cdot (\mathsf{said} \cdot x)) \cdot (\mathsf{bidk} \cdot (\mathsf{why} \cdot \mathsf{WHYSLUICEGAP}))) \vdash \mathsf{S}}{=}$ 

 $(\mathsf{Mary} \cdot (\mathsf{said} \cdot (\mathsf{John} \cdot \mathsf{left}))) \cdot (\mathsf{bidk} \cdot (\mathsf{why} \cdot \mathsf{WHYSLUICEGAP})) \vdash \mathsf{S}$ 

For the other reading, take Mary said John left as the antecedent.

Perfectly straightforward anaphora to a clause.

32/42

### Sprouting: less simple

- 33/42
- Sprouting with silence
- (22) a. I want to know when Mary said John left. (ambiguous!)
  - b. when:  $S/(ADV \otimes S)$ , where  $ADV = (DP \otimes (DP \otimes S) \otimes (DP \otimes S)$
  - c. Whenslgap: ((ADV S) S) / ((ADV S) ((ADV S) S))
  - d. Target: Mary said John left, but I don't know when [she said he (left \_)].
  - e. Need to find an  $\operatorname{ADV}$  position inside of John left.
  - Strategy: allow empty antecedents
  - Empty antecedents usually avoided in TLG (\*very man)
  - Silent lexical entries avoided in general
  - Strategies for eliminating silence, as in Jäger, could be tried;
  - ... if so, however, unsure about interaction with swiping.
  - In any case, already using silent lexical entry for **SLUICEGAP**.

#### when: $Q/(ADV \ S)$ , WHENSLGAP = $((ADV \ S) \ S) //((ADV \ S) \ S) ((ADV \ S) \ S))$ $ADV = (DP \setminus S) \setminus (DP \setminus S)$ $(DP \setminus S) \vdash DP \setminus S$ $(\mathsf{DP} \setminus \mathsf{S}) \cdot () \vdash \mathsf{DP} \setminus \mathsf{S}$ $() \vdash (\mathsf{DP} \setminus \mathsf{S}) \setminus (\mathsf{DP} \setminus \mathsf{S})$ $S \cdot (\mathsf{bidk} \cdot (\mathsf{when} \cdot \mathrm{ADV} \backslash\!\!\backslash S)) \vdash S$ $() \vdash ADV$ $(() \circ ADV \mathbb{N}S)(bidk \cdot (when \cdot ADV \mathbb{N}S)) \vdash S$ $\frac{1}{\operatorname{ADV}(\mathbb{S} \circ \lambda y((() \circ y)(\operatorname{bidk} \cdot (\operatorname{when} \cdot \operatorname{ADV}(\mathbb{S})))) \vdash S}{\lambda y((() \circ y)(\operatorname{bidk} \cdot (\operatorname{when} \cdot \operatorname{ADV}(\mathbb{S}))) \vdash (\operatorname{ADV}(\mathbb{S})))} \mathbb{S}} \mathbb{L}$ $\mathsf{John} \cdot (\mathsf{left} \cdot \mathsf{ADV}) \vdash \mathsf{S}$ ADV $\circ \lambda x$ (John $\cdot$ (left $\cdot x$ )) $\vdash$ S $\lambda x(\mathsf{John} \cdot (\mathsf{left} \cdot x)) \vdash \mathrm{ADV} \mathbb{NS}$ $\overline{\lambda_z \lambda_y((() \circ y)(\mathsf{bidk} \cdot (\mathsf{when} \cdot z)))} \vdash (\mathrm{ADV} \mathbb{S}) \mathbb{K}((\mathrm{ADV} \mathbb{S}) \mathbb{S})$ $\lambda x(\operatorname{John} \cdot (\operatorname{left} \cdot x)) \circ (\operatorname{ADV} S) \otimes S \vdash S$ $\lambda x (\mathsf{John} \cdot (\mathsf{left} \cdot x)) \circ (\mathsf{WHENSLGAP} \circ \lambda z \lambda y((() \circ y)(\mathsf{bidk} \cdot (\mathsf{when} \cdot z)))) \vdash \mathsf{S}$ $\lambda x(\text{John} \cdot (\text{left} \cdot x)) \circ \lambda y((() \circ y)(\text{bidk} \cdot (\text{when} \cdot \text{WHENSLGAP}))) \vdash S$ $(() \circ \lambda x(\mathsf{John} \cdot (\mathsf{left} \cdot x))) \cdot (\mathsf{bidk} \cdot (\mathsf{when} \cdot \mathsf{WHENSLGAP})) \vdash \mathsf{S}$ $(John \cdot (left \cdot ())) \cdot (bidk \cdot (when \cdot WHENSLGAP)) \vdash S$

 $(\mathsf{John} \cdot \mathsf{left}) \cdot (\mathsf{bidk} \cdot (\mathsf{when} \cdot \mathrm{WHENSLGAP})) \vdash \mathsf{S}$ 

## Independent motivation for empty antecedents: deriving $\frac{34}{2}$

- $\bullet$  Assume the empty structure, '()', is an identity element for  $\circ$
- So  $\Gamma \circ () \equiv \Gamma \equiv () \circ \Gamma$

$$\frac{\mathsf{DP}\mathbb{S} \vdash \mathsf{DP}\mathbb{S}}{() \circ \mathsf{DP}\mathbb{S} \vdash \mathsf{DP}\mathbb{S}} \equiv \\ \frac{() \vdash (\mathsf{DP}\mathbb{S})/(\mathsf{DP}\mathbb{S})}{() \vdash (\mathsf{DP}\mathbb{S})/(\mathsf{DP}\mathbb{S})} / R$$

who:  $Q/(DP \otimes S)$ : who does John like:

$$\frac{\operatorname{does} \cdot (\operatorname{John} \cdot (\operatorname{like} \cdot \operatorname{DP})) \vdash \mathsf{S}}{\frac{\mathsf{DP} \circ \lambda x (\operatorname{does} \cdot (\operatorname{John} \cdot (\operatorname{like} \cdot x))) \vdash \mathsf{S}}{\lambda x (\operatorname{does} \cdot (\operatorname{John} \cdot (\operatorname{like} \cdot x))) \vdash \mathsf{DP} \mathbb{I} \mathsf{S}} \frac{\mathsf{P} \mathbb{I} \mathsf{S} \vdash \mathsf{DP} \mathbb{I} \mathsf{S}}{\langle \mathsf{DP} \mathbb{I} \mathsf{S} / (\mathsf{DP} \mathbb{I} \mathsf{S}) \circ \lambda x (\operatorname{does} \cdot (\operatorname{John} \cdot (\operatorname{like} \cdot x))) \vdash \mathsf{DP} \mathbb{I} \mathsf{S}} \frac{\mathsf{I} L}{\operatorname{LEX}}}{\frac{\mathsf{GAP} \circ \lambda x (\operatorname{does} \cdot (\operatorname{John} \cdot (\operatorname{like} \cdot x))) \vdash \mathsf{DP} \mathbb{I} \mathsf{S}}{\operatorname{does} \cdot (\operatorname{John} \cdot (\operatorname{like} \cdot x))) \vdash \mathsf{DP} \mathbb{I} \mathsf{S}}} =$$

Likewise for  $\cdot$  mode. Silent elements usually avoided in TLG, but standard in many logical settings.

### Implicit arguments

- (23) a. John ate, but I don't know what.
  - b. New category: given A, B formulas,  $A \otimes B$
  - c. Residuation laws:  $A \vdash C/B$  iff  $A \otimes B \vdash C$  iff  $B \vdash A \setminus C$
  - d.  $ate_{INTR}$  :  $\langle eat_{tr}, \lambda P \exists x. Px \rangle : ((DP \setminus S)/DP) \otimes S / (DP \setminus S)$

$$\frac{\Sigma[A \cdot B] \vdash C}{\Sigma[A \otimes B] \vdash C} \otimes L \qquad \frac{\Gamma \vdash A \quad \Delta \vdash B}{\Gamma \cdot \Delta \vdash A \otimes B} \otimes R$$

 $\frac{(\mathsf{John} \cdot (((\mathsf{DP}\backslash \mathsf{S})/\mathsf{DP}) \cdot \mathsf{S}/\!\!/(\mathsf{DP}\backslash\!\backslash \mathsf{S}))) \cdot (\mathsf{bidk} \cdot (\mathsf{what} \cdot \mathsf{SLUICEGAP})) \vdash \mathsf{S}}{(\mathsf{John} \cdot ((\mathsf{DP}\backslash \mathsf{S})/\mathsf{DP}) \otimes \mathsf{S}/\!\!/(\mathsf{DP}\backslash\!\backslash \mathsf{S})) \cdot (\mathsf{bidk} \cdot (\mathsf{what} \cdot \mathsf{SLUICEGAP})) \vdash \mathsf{S}}_{(\mathsf{John} \cdot \mathsf{ate}_{\mathsf{INTRANS}}) \cdot (\mathsf{bidk} \cdot (\mathsf{what} \cdot \mathsf{SLUICEGAP})) \vdash \mathsf{S}}} \mathsf{LEX}}$ 

(24) a. Everyone ate, but I don't know what. ∀ > ∃, ?\*∃ > ∀
b. ?No one ate, but I don't know what.

Available to Jäger; how to guarantee narrowest scope of IA?

#### **Problems for mutual entailment**

Romero, Merchant: the focus closure of the antecedent clause and the sluice must entail each other.

Counterexamples:

- (20) \*Kelly was murdered, but we don't know who.
- (21) \*Someone paid Mary, but we don't know by whom.
- (22) Some numbers between 2 and 20 are even or odd, but I'm not going to tell you which numbers are prime or not prime.

#### The answer ban

37/42

38/42

- The antecendent clause must not resolve (or partly resolve) the issue raised by the sluiced interrogative.
- (27) \*John left, but I don't know who.
- (28) John left, but I don't know who else.
- (29) \*John or Mary left, but I don't know who.
- (30) John met a woman, but I don't know who.
- (31) Mary knows that John left, but Bill doesn't know who.

#### The wh-correlate does NOT need to be indefinite

- (23) I know that John left, but I don't know who else.
- (24) Mary has dined at Masa, and I don't know where else.
- (25) John liked the collards, but I don't know which other dishes.
- (26) Mary tasted each hot dish, and I don't know what else.

## Andrews Amalgams: ellipsis to a containing continuation $^{40/42}$

- (33) Johnson 2013:
  - a. Sally will eat something today, but I don't know what \_\_\_.
  - b. Sally will eat [I don't know what \_\_] today.

$$\frac{idk \cdot (what \cdot DP \ S) \vdash S}{\frac{DP \ S \circ \lambda x(idk \cdot (what \cdot x)) \vdash S}{\lambda x(idk \cdot (what \cdot x)) \vdash (DP \ S) \ S} \equiv \frac{\lambda x(idk \cdot (what \cdot x)) \vdash (DP \ S) \ S}{\lambda x(idk \cdot (what \cdot x)) \vdash G} = \frac{JL}{\frac{AMALGAM \circ \lambda x(idk \cdot (what \cdot x)) \vdash G}{idk \cdot (what \cdot AMALGAM) \vdash G}} \equiv \frac{\lambda y(idk \cdot (what \cdot y)) \vdash (DP \ S) \ S}{(G \ ((DP \ S) \ S) \circ \lambda y(idk \cdot (what \cdot y))) \circ \lambda x(Sally \cdot (ate \cdot x)) \vdash S} = \frac{JL}{Sally \cdot (ate \cdot (idk \cdot (what \cdot AMALGAM))) \vdash S} =$$

### $G \equiv S / (DP \mathbb{S})$ (i.e., scope-taking DP, a generalized quantifier)

#### **Mismatching examples**

Chung 2006: The syntactic objects which are copied or re-used will have to be abstract enough to permit certain 'mismatches' between the antecedent and the apparent requirements of the ellipsis-site.

(25) a. John remembers meeting someone,

but he doesn't remember who [<del>he met</del>].

b.  $((DP S_{-ING}) S) / ((DP S) ((DP S)) (S_{-ING}) S)$ 

- Syntax is no problem.
- Semantically, no need to build a tensed clause: only necessary to turn an -ING clause meaning into a tensed clause meaning.
- In this case, we need a function from a "remembering" event type to an open proposition concerning a specific event within that event type

### Claims

42/42

- The ellipsis site contains a silent proform, e.g., SLUICEGAP
- So silent elements are ok-but don't have internal structure
- The syntactic category of the inner antecedent is transparently available to the sluicegap, **case matching is easy**
- The inner antecedent must scope over the antecedent clause
- Because the only constraint on the relationship between the inner antecedent and the antecedent clause is scopability, sluicing is insensitive to synctactic islands.
- When implemented by a suitable type logical grammar that allows reasoning about scope, **sprouting follows** from independently motivated assumptions about empty antecedents

Sluicing is anaphora to an anti-constituent, that is, anaphora to a continuation.