Jolijn Sonnaert KU Leuven - OG ComForT jolijn.sonnaert@kuleuven.be

A Kite Analysis of Person

Limitations on Concept Formation of Person

The atoms of person (English):

	sg		
1	1	speaker	i
2	you	hearer	U
3	he, she, it	non-participant	0

	pl		
1	We	speaker + associates	ia
2	уои	hearer + associates	ua
3	they	non-participant + associates	oa

Problem: inclusive (Tümpisa Shoshone (Dayley 1989))

	sg	pl	
INCL		ta-mmü	(iu(a))
1	nü (i)	nü-mmü	ia
2	ü (U)	mü-mmü	ua
3	(demonstr) o	(demonstr)	oa

Claim

- Combinations of person atoms:
 - -i + u = INCL
 - -i + ou + o = UNLEXICALISABLE
- Predicted by the Concept Formation Constraint in the kite framework

Outline

- 1. The Concept Formation Constraint
- 2. Syncretism
- 3. Number
- 4. Conclusion
- 5. Questions

Outline

1. The Concept Formation Constraint

- 2. Syncretism
- 3. Number
- 4. Conclusion
- 5. Questions

1. Concept Formation Constraint

- 1.1. The Kite Framework
- 1.2. Claim
- 1.3. A Mereology
- 1.4. Deriving the Person Kite
- 1.5. The Unlexicalised Combinations

1.1. The Kite Framework

Lexicalisation in certain closed lexical fields is restricted by a concept formation

constraint (Jaspers 2012, Seuren & Jaspers 2014):

Logical hexagon A

(Jacoby, Sesmat, Blanché) O and U never lexicalised

• Result: kite structure

1.1. The Kite Framework

Logical square of Aristotle

Ambiguity of "some"

- Some, possibly all: "If some students pass the test, I'll throw a party"
 - \rightarrow "If all students pass the test, I'll throw a party"
- Some but not all: "Some people are allergic to chocolate"
 - "All people are allergic to chocolate"
- ➔ According to a.o. Grice: pragmatic restriction

According to a.o. Seuren & Jaspers:

"Since this difference is a crisp truthconditional one, we speak of **semantic and not of pragmatic ambiguity**, even if a pragmatic principle may play a role in the genesis of the ambiguity."

(Seuren & Jaspers 2014, p. 620)

1.1. The Kite Framework

1.1. The Kite Framework

Seuren & Jaspers 2014

1.2 Claim

Person deixis: corresponding limitations on concept formation *****io

1.3. Mereology

Mereology = theory of parthood relations (Jaspers 2012, Varzi 2016)

- *i* and *u* are proper parts of *iu*
- *iu* = mereological sum of *i* and *u*

Differences

Logical systems

- Quantifiers
- Relations:
 - Entailment
 - Contradiction
 - Contrariety
- I-O-U: disjunction

Mereologies

- Person
- Relations
 - Proper parthood
 - Exhaustive complementarity
 - Non-exhaustive complementarity
- I-O-U: mereological sum

Mereology: Kite follows from a single proper parthood rel

(Seuren & Jaspers 2014)

Proper parthood

26

Complementarity

Non-exhaustive complementarity

1.5. Conclusion

The kite: INCLUSIVE as only complex person:

2.5. The Unlexicalised Combinations: **io & *uo*

- Sample: 39 lgs
- Typological literature:
 - Daniel 2005
 - Bobaljik 2008
 - Cysouw 2009
 - Forchheimer 2014
 - Harbour To Appear
- 2 side notes:
 - Syncretism
 - Number

Outline

- 1. The Concept Formation Constraint
- 2. Syncretism
- 3. Number
- 4. Conclusion
- 5. Questions

A Lexicalised uo?

• Some lgs: syncr *u* and *o* E.g. Warekena (Cysouw 2009)

	sg	pl
iu		waya
i	nuya	waya
U	piya	niya
0	(demonstratives)	niva

A Lexicalised uo?

- Some lgs: syncr u and o
 E.g. Warekena waya

 pl
 iu waya
 i waya
 u niya
 waya
 niya
 niya
- NOT the same as lexicalised uo

Motivation

- Lexicalised combination:
 - Mereological sum:
 - AND
 - $-[\alpha \wedge \beta]$
- Syncretism:
 - No mereological sum:
 OR
 - $-[\alpha \lor \beta]$

2. Syncretism

Compare with non-incl Ig: English Syncretism: OR

- Compare with non-incl lg: English
 - Syncretism: OR: *ia* V *iua*
 - We have excellent coffee
 - \rightarrow ia
 - *→ iu(a)*

- Compare with non-incl Ig: English
 - Syncretism: OR: *ia* V *iua*
 - We have excellent coffee
 - \rightarrow ia
 - → iu(a)
- Compare with incl Ig: Tümpisa
 - Lexicalised combination: AND
 - *iu*: *i* 🕀 *u*
 - Necessarily: $i \land u \rightarrow iu$ (tammü)
 - Impossible: $i \lor u \rightarrow i$ (*nümmü*) OR u (*mümmü*)
- → EXPECTATION *niya*: OR → SYNCRETISM

wa-ñuta-nini-ſa-paluni-yamula-wathen-call-3pl3pl-go-purp2pl-hunt-NONACC

ni-yutſia-paluwa-yue-hẽkueſinuya-hã2pl-kill-PURP1pl-for-PAUSgameI-PAUS

nu-ſia-wa wani-hĩ pani-ſiwe 1sg-stay-NONACC here-PAUS house-NPOSS+LOC

'He (the toad) told them (his cousins) to go, "you hunt, to kill game for us, I shall stay home"

Aikhenvald 1998

Same for sg pronouns: Sanapaná (Harbour to appear):

Hlejapmetkopatakonap-angok.2S/3SNEGmoney2/3-POSS'He doesn't have money.''You and he don't have money.'

Ta'asekakjehlnaap-ta-ohlejap?whichfruit2/3-eat-Q2S/3S'Which fruit did you eat?''Which fruit did you and he eat?'

Summary:

- Lexicalised combination:
 - Mereological sum:

AND

- $-iu = [i \wedge u]$
- Syncretism:
 - No mereological sum:
 OR
 - $\begin{bmatrix} i \lor u \end{bmatrix} \\ \begin{bmatrix} u \lor o \end{bmatrix}$

Outline

- 1. The Concept Formation Constraint
- 2. Syncretism

3. Number

- 4. Conclusion
- 5. Questions

Crucially: $3^{rd} \neq pl$

- Many analyses: +3 = pl
 e.g:
 - 3sg = 3 o
 - -3pl = 3+3 oo
 - -2sg = 2 u
 - -2pl = 2+3 uo
- *io* & *uo* are lexicalised

Claim

- $i = 1^{st}$ person
- $u = 2^{nd}$ person
- $o = 3^{rd}$ person
- *iu* = inclusive
- PLURAL:

DIFFERENT morphologically and semantically

a = + associates

(Ackema and Neeleman, to appear)

Semantic differences

- Deixis:
 - -1st, 2nd, 3rd person: inherently deictic (Béjar 2003)
 - pl: never defined as deictic (e.g. Harbour 2008, Corbett 2004)
- Reference: (Ackema & Neeleman to appear, pp. 70-73)

– "[W]hat is an *o* at a particular point in the discourse cannot be included in the reference of a first or second person plural pronoun without first being turned into an associate in some way."

1. (Peter:) Do you know whether George Clooney likes good coffee?

- a) (Ad:) #Yes, we both drink Illy.
- b) (Ad:) Yes, he drinks Illy, just like me.

2. (Ad:) We both know good coffee when we see it.

- 1. (Peter:) Do you know whether George Clooney likes good coffee?
 - a) (Ad:) # Yes, they both drink Illy.
 - b) (Ad:) Yes, he drinks Illy, just like Julia Roberts.

2. (Ad:) They both know good coffee when they see it.

Morphological differences

- IF 3rd = pl THEN expectation: no 3rd pl needed
 - $-2+3 \neq$ hr + 1 other
 - -2+3 = hr + 1 or more others
 - -+3 = +3 / +3 + 3' / +3 +3' +3" / ...

-3 = 3 / 3+3' / 3+3'+3" / ...

 IF 3rd = pl THEN expectation: Igs with same morpheme for pl as for 3rd

	sg	pl	Tümpisa Shoshone			
incl		α-δ	INCL		ta-mmü	
1	β	β - δ	1	nü	nü- <mark>mmü</mark>	
2	γ	γ-δ	2	ü	mü- <mark>mmü</mark>	
3	δ	δ	3	(Demc	onstratives)	

Alleged counterexample

Sample and typological literature: 1 alleged counterexample: Kalaw Lagaw Ya (Forchheimer 1953, p. 127)

	_	(Ray 1907)	
	sg	pl	
incl	/	ngal-pa	
1	ngai	ngoi	≠ 1sg + 3
2	ngi	ngita	
2 (m)	nui	topo	
3 (f)	na	lana	

		sg	pl
incl		/	ngal-pa
1	(m)	ngai	naoi naöi
I	(f)	nazo	
2		ngi	ngi-ta(na)
2	(m)	noi, nu	to no ori
3	(f)	na, nadu	la-na, an

(Ford & Ober 2004) (Round & Stirling 2015)					
	sg	pl			
incl	/	ngalpa			
1	ngay	ngoey			
2	ngi	ngitha			
3 (m) (f)	nuy na	thana			

Sg

3. Number

Deictic system

Proximate	Μ	F	DU	PL
In view	in	ina	ipal	i <mark>tha</mark>
Not in view	inubi	inabi	ipalbi	i <mark>tha</mark> bi
Locational	inuki	inaki	ipalki	i <mark>tha</mark> ki
Remote				
In view	senaw	sena	sepal	setha
Not in view	senawbi	senabi	sepalbi	se <mark>tha</mark> bi
Locational	senawki	senaki	sepalki	se <mark>tha</mark> ki
'over there'			•	
Nominal	pinungap	pinangap	pipalngap	pi <mark>tha</mark> ngap
Locational	pinungapki	pinangapki	pipalngapki	pi <mark>tha</mark> ngapki
'up there'	F&F	F8-F	F - F 0 - F	F - <mark></mark>
Nominal	pinuka	pinaka	pipalka	pi <mark>tha</mark> ka
Locational	pinukaki	pinakaki	pipalkaki	pi <mark>tha</mark> kaki
'down there'	-	-		
Nominal	pinuguy	pinaguy	pipalguy	pi <mark>tha</mark> guy
Locational	pinuguyki	pinaguyki	pipalguyki	pi <mark>tha</mark> guyki
		pinagajai	PipuiBujui	Pr <mark>un</mark> Bujm
up at the front	•			
Nominal	pinupay	pinapay	pipalpay	pi <mark>tha</mark> pay
Locational	pinupayki	pinapayki	pipalpayki	pi <mark>tha</mark> payki
'down at the ba	ck'			
Nominal	pinupun	pinapun	pipalpun	pi <mark>tha</mark> pun
Locational	pinupunki	pinapunki	pipalpunki	pi <mark>tha</mark> punki

Number

			(Ray 1907)				3. Numbe
		sg	pl				
in	С	/	ngal-pa				
1		ngai	ngoi				
2		ngi	ngita	= 2	lsg + P	L ≠ 2	sg + 3pl
3	(m)	nui		= F	91 + 3s	O	
ン 	(f)	na		ľ		(Ford &	& Ober 2004)
					(Ro		Stirling 2015)
						sg	pl
					incl	/	ngalpa
					1	ngay	ngoey
			= PL		2	ngi	ngitha
					3 (m) nuy	thong
					-3 (f)	na	ullana

3. Number 1.pl ngoi ngai noi, tana 1.sg 3.sg, 3pl **ngi-ta(na)** 2.pl ngal-pa incl **ngi** 2.sg

Summary

- Semantics:
 - deixis
 - reference
- Morphology:
 - number distinction for 3rd person
 - different morphemes for 3rd person and plural

Outline

- 1. The Concept Formation Constraint
- 2. Syncretism
- 3. Number
- **4.** Conclusion
- 5. Questions

Conclusion

- The Concept Formation Constraint can be applied to person.
- Inclusive is the only complex person
 → Mereological sum *iu*.
- Other combinations of person atoms are unlexicalisable:
 - A syncretic *u* and *o* do not correspond to a lexicalised *uo*.
 - uo and io do not correspond to plural pronouns.
 Plural is formed by adding a.

For further research

Number in the kite: Ackema & Neeleman to appear: *a* is person, not number
 → extension to a 4-atom universe (Roelandt 2016)

Thank you!

Outline

- 1. The Concept Formation Constraint
- 2. Syncretism
- 3. Number
- 4. Conclusion
- **5. Questions**