Splitting up the comparative Evidence from Czech

Karen De Clercq & Guido Vanden Wyngaerd FWO/U Gent & KU Leuven

CRISSP10 15 December 2016

Outline

- 1 The Containment Hypothesis
- 2 Czech morphology
- 3 The internal structure of the comparative
- Suppletion
- **5** Suppletion meets Negation
- 6 Conclusions

Outline

- 1 The Containment Hypothesis
- 2 Czech morphology
- 3 The internal structure of the comparative
- Suppletion
- **5** Suppletion meets Negation
- 6 Conclusions

Containment Hypothesis

'The representation of the superlative properly contains that of the comparative' (Bobaljik 2012: 4)

Morphological evidence

	Pos	CMPR	Sprl	
Persian	kam	kam-tar	kam-tar-in	little'
Cimbrian	šüa	šüan- <mark>ar</mark>	šüan- <mark>ar</mark> -ste	'pretty'
Czech	mlad-ý	mlad- <mark>ší</mark>	nej-mlad- <mark>ší</mark>	'young'
Hungarian	nagy	nagy- <mark>obb</mark>	leg-nagy- <mark>obb</mark>	'big'
Latvian	zil-ais	zil- <mark>âk</mark> -ais	vis-zil- <mark>âk</mark> -ais	'orange'
Ubvkh	nüs ^w ə	c'a-nüs ^w ə	a-c'a-nüs ^w ə	'pretty'

Comparative-Superlative Generalisation

When the comparative has a suppletive form, the superlative will also be suppletive, and vice versa (Bobaljik 2012: 29-30).

CSG

Comparative-Superlative Generalisation

When the comparative has a suppletive form, the superlative will also be suppletive, and vice versa (Bobaljik 2012: 29-30).

(3) ABB good better best *ABA good better goodest *AAB good gooder best

$$Cmpr = C1 + C2$$

Our claim

 the Cmpr head is to be split up into two distinct heads, C1 and C2 (see also Caha 2016)

Evidence comes from Czech

- regular degree morphology
- root suppletion in degree morphology
- the interaction of negation and root suppletion in degree morphology

Outline

- 1 The Containment Hypothesis
- 2 Czech morphology
- 3 The internal structure of the comparative
- Suppletion
- **5** Suppletion meets Negation
- Conclusions

Regular comparative degree morphology

-ějš-

```
(5)
        Pos
                   CMPR
                                 Sprl
        červen-ý
                   červen-ějš-í
                                 nej-červen-ějš-í
                                                   'red'
        hloup-ý
                   hloup-ějš-í
                                 nej-hloup-ějš-í
                                                   'stupid'
                   moudř-ejš-í
                                 nej-moudř-ejš-í
                                                   'wise'
        moudr-ý
```


Regular comparative degree morphology

```
-ějš-
```

```
(6)
        Pos
                  CMPR.
                                SPRL
        červen-ý
                  červen-ějš-í nej-červen-ějš-í
                                                 'red'
        hloup-ý
                  hloup-ějš-í nej-hloup-ějš-í 'stupid'
        moudr-ý
                  moudř-ejš-í
                                nej-moudř-ejš-í
                                                 'wise'
```

```
i/\dot{v} = adjectival agreement: Case, number, gender
```


5 pieces of evidence showing that $-\check{e}j\check{s}$ - consists of two parts $(\check{e}j+\check{s})$

- **1** -ěj- disappears with suppletive roots
- 2 -ěj- disappears in cases where the root shortens
- **3** -ěj- can disappear non-predictably
- **4** -*ěj* disappears with de-adjectival verbs
- **5** -š- disappears with comparative adverbs

1 -ěj- disappears with suppletive roots

(7)	Pos	Cmpr	Sprl	
	dobr-ý	lep-š-í	nej-lep-š-í	'good'
	špatn-ý	hor-š-í	nej-hor-š-í	'bad'
	mal-ý	men-š-í	nej-men-š-í	'little, small'
	velk-ý	vět-š-í	nej-vět-š-í	'big'

2 -*ěj*- disappears in cases where the root shortens

(8)	Pos	Cmpr	
	dlouh-ý	del-š-í	'long'
	blízk-ý	bliž-š-í	'close'
	vys-ok-ý	vyš-š-í	'tall'

3 -*ěj*- can disappear non-predictably

(9)	Pos	Cmpr	
	star-ý	star-š-í	ʻold'
	such-ý	suš-š-í	'dry'
	drah-ý	draž-š-í	'expensive'

Czech

4 -ěj- disappears with de-adjectival verbs

(10)	Pos	Cmpr	Verb	
	such-ý	suš-š-í	(u-)suš-i-t	'dry'
	mokr-ý	mokř-ejš-í	(za-)mokř-i-t	'wet'
	levn-ý	levn-ějš-í	z-levn-i-t	'cheap'
	drah-ý	draž-š-í	z-draž-i-t	'expensive'
	dlouh-ý	del-š-í	z-dlouž-i-t, z-del-š-i-t	'long'

```
(11) CMPR ADJ CMPR ADV

červen-ěj-š-í červen-ěj-i 'redder'

hloup-ěj-š-í hloup-ěj-i 'more stupid'

moudř-ej-š-í moudř-ej-i 'wiser'
```

Preliminary Conclusion

The regular comparative suffix consists of two parts: $\check{e}j+\check{s}$

Nanosyntax

Czech

- One Feature, One Head (OFOH)
- Postsyntactic Lexicon
- Phrasal Spellout
- Language variation can be reduced to the size of lexically stored trees (Starke 2011)

Outline

- The Containment Hypothesis
- 2 Czech morphology
- 3 The internal structure of the comparative
- Suppletion
- **5** Suppletion meets Negation
- Conclusions

The Czech regular comparative

(12)
$$C2P \Rightarrow -\check{s}$$
-
$$C1 \qquad QP \Rightarrow moudr$$

$$Q \qquad aP$$

(13) a.
$$<$$
 /moudr-/, [QP Q [aP a [\sqrt{P} $\sqrt{\ }$]]], WISE > b. $<$ /-ěj-/, [C1P C1] > c. $<$ /-š-/, [C2P C2] >

The derivation-1

(14) C1P
$$QP \Rightarrow moudr$$

$$Q \qquad aP$$

$$<$$
 /moudr-/, [QP Q [aP a [\sqrt{P} $\sqrt{ }$]]], WISE $>$ $<$ /-ĕj-/, [C1P C1] $>$

The derivation-2 (spellout-driven movement)

$$<$$
 /-ěj-/, [C1P C1] $>$

(16)
$$\begin{array}{ccc} C2P & & \\ \hline C2 & C1P & & \\ \hline moudr- \Leftarrow & QP & & C1P \Rightarrow -\check{e}j-\\ \hline Q & aP & C1 & & \\ \hline a & & \sqrt{P} & & \\ \end{array}$$

$$$$

The derivation-4

$$$$

$$<$$
 /-nej-/, [SprIP SprI] $>$

28/68 Splitting up the comparative bit.ly/2fx8Gi4

English

(19)
$$\begin{array}{c} C2P \Rightarrow -er \\ \hline C2 & C1P \\ \hline C1 & QP \Rightarrow wise \\ \hline Q & aP \\ \hline a & \sqrt{} \end{array}$$

(20) a.
$$<$$
 /wise/, [QP Q [aP a [\sqrt{P} $\sqrt{ }$]]] > b. $<$ /-er/, [C2P C2 [C1P C1]] >

(22)
$$<$$
 /-est/, [SprlP Sprl [C2P C2 [C1P C1]]] $>$

Language variation

(23)	POS	CMPR	SPRL
	wise	wis-er	wis-est
	moudr-ý	moudř-ej-š-í	nej-moudř-ej-š-í

 the difference between Czech and English is entirely located in the size of the lexically stored trees

Outline

- The Containment Hypothesis
- 2 Czech morphology
- 3 The internal structure of the comparative
- Suppletion
- **5** Suppletion meets Negation
- Conclusions

Suppletion

Two types:

- Portmanteau suppletion (24a)
- Root suppletion (24b)

Portmanteau suppletion: pointers

```
(25) a. <_{\text{WORSE}} /worse/, [C2P BAD ER] > b. <_{\text{BAD}} /bad/, [QP Q [aP a \sqrt{P}]] > c. <_{\text{-ER}} /-er/, [C2P C2 [C1P C1]] >
```


Portmanteau suppletion: pointers

(25) a.
$$<_{\text{WORSE}}$$
 /worse/, [C2P BAD ER] > b. $<_{\text{BAD}}$ /bad/, [QP Q [aP a \sqrt{P}]] > c. $<_{\text{-ER}}$ /-er/, [C2P C2 [C1P C1]] >

Root Suppletion in Distributed Morphology

root suppletion = contextual allomorphy

Root Suppletion in Distributed Morphology

root suppletion = contextual allomorphy

(27) A (28)
$$CMPRP$$

$$\sqrt{GOOD} \qquad A \qquad CMPR$$

$$\sqrt{GOOD}$$

(29) a.
$$\sqrt{\text{GOOD}} \rightarrow be(tt)$$
- / ____] CMPR] b. $\sqrt{\text{GOOD}} \rightarrow good$

Nanosyntax

- lexical insertion is uniquely governed by the Superset Principle and the Elsewhere Principle
- rules of contextual allomorphy are unavailable
- the contrast between good and bett- is one of internal makeup
 - good spells out QP
 - bett- spells out C1P (and contains a pointer to GOOD)
- we will argue that this approach is superior to the DM one

better

(31) a.
$$<_{GOOD}/good/, [QP Q [aP a [\sqrt{P} \sqrt{\ }]]] >$$
 b. $<_{BETT}/bett-/, [C1P C1 GOOD]] >$

This analysis explains 1

5 pieces of evidence showing that $-\check{e}j\check{s}$ - consists of two parts $(\check{e}j+\check{s})$

- 1 -ĕj- disappears with suppletive roots
- \mathbf{Q} - $\check{e}j$ disappears in cases where the root shortens
- **3** -ěj- can disappear non-predictably
- 4 -ěj- disappears with de-adjectival verbs
- **5** $-\check{s}$ disappears with comparative adverbs

lep- eats up -ěi-

(32)
$$C2P \Rightarrow -\check{s}$$
-
$$C1 \qquad QP \Rightarrow lep$$
-
$$Q \qquad aP$$

a. $<_{DOBR}$ /dobr-/, [QP Q [aP a [\sqrt{P} $\sqrt{\ }$]]] >(33)b. $<_{LEP}$ /lep-/, $[_{C1P}$ C1 DOBR $]]^{v}$ > c. $</-e_{j-}/, [C_{1P} C_{1}]>$ d. $<_{\S}$ /- \S -/, [C2P C2] >

This analysis explains 1

- 1 -ěj- disappears with suppletive roots
- -ĕj- spells out the C1 feature
- the suppletive root lep- also spells out C1
- therefore, suppletive roots are predicted to be incompatible with -ĕj- in principle

DM: contextual allomorphy

DM: contextual allomorphy

(35) a.
$$\sqrt{\text{GOOD}} \rightarrow \textit{lep-} / ___] \text{ C1 }]$$
 b. $\sqrt{\text{GOOD}} \rightarrow \textit{dobr-}$

(36) a. C1
$$ightarrow$$
 ěj b. C1 $ightarrow$ Ø / lep ____

- a rule like (36b) must be duplicated for each suppletive root
- nothing in principle prevents the existence of suppletive roots with $-\check{e}j$: these would simply be cases where a rule like (36b) would be lacking
- there is no principled explanation for the systematic absence of -ĕi- with suppletive (and shortened) roots

The analysis explains 2

5 pieces of evidence showing that $-\check{e}j\check{s}$ - consists of two parts $(\check{e}j+\check{s})$

- 1 -ěj- disappears with suppletive roots
- 2 -ĕj- disappears in cases where the root shortens
- **3** -ěj- can disappear non-predictably
- 4 -ěj- disappears with de-adjectival verbs
- $\mathbf{5}$ - \dot{s} disappears with comparative adverbs
- ⇒ shortened roots (like suppletive roots) spell out C1P

References

(37) a.
$$<_{DLOUH}$$
 /dlouh-/, [QP Q [aP a [\sqrt{P} $\sqrt{\ }$]]] > b. $<_{DEL}$ /del-/, [C1P C1 DLOUH]] >

The analysis explains 3

5 pieces of evidence showing that $-\check{e}j\check{s}$ - consists of two parts $(\check{e}j+\check{s})$

- 1 -ěj- disappears with suppletive roots
- 2 -ěj- disappears in cases where the root shortens
- 3 -ĕj- can disappear non-predictably
- 4 -ěj- disappears with de-adjectival verbs
- $\mathbf{5}$ - \check{s} disappears with comparative adverbs
- \Rightarrow the relevant lexical items spell out C1P

References

- (9) Pos CMPR

 star-ý star-š-í 'old'

 such-ý suš-š-í 'dry'

 drah-ý draž-š-í 'expensive'
- (38) < /star-/, [C1P C1 [QP Q [aP a [\sqrt{P} $\sqrt{ }$]]]] >
 - star- can spell out C1P, causing -ěj- to disappear in the comparative
 - star- does not contain a pointer
 - in virtue of the Superset Principle, star- can also spell out QP
 - the difference between these adjectives and the ones that do take -ěj-š- is a matter of lexical idiosyncrasy

5 pieces of evidence showing that $-\check{e}j\check{s}$ - consists of two parts $(\check{e}j+\check{s})$

- **1** -ěj- disappears with suppletive roots
- 2 -ěj- disappears in cases where the root shortens
- **3** -ěj- can disappear non-predictably
- **4** -ej- disappears with de-adjectival verbs (difficult)
- **6** -š- disappears with comparative adverbs (easy)

5 pieces of evidence showing that $-\check{e}j\check{s}$ - consists of two parts $(\check{e}j+\check{s})$

- **1** -ěj- disappears with suppletive roots
- 2 -ěj- disappears in cases where the root shortens
- **3** -ěj- can disappear non-predictably
- **4** -ei- disappears with de-adjectival verbs (difficult)
- **6** -š- disappears with comparative adverbs (easy)

We skip 4 and 5 here ...and move on to the interaction with negation ...

Outline

- 1 The Containment Hypothesis
- 2 Czech morphology
- 3 The internal structure of the comparative
- Suppletion
- **5** Suppletion meets Negation
- 6 Conclusions

A hypothetical case

The hypothetical case we wish to consider is one of an adjective with the following properties:

- 1 a morphological comparative
- 2 a negative prefix
- 3 root suppletion
- unhappier has 1 and 2, but not 3
- ungood would have all three (if it existed!)
- Czech has the equivalent of ungood

Unhappier has – theoretically speaking – 2 possible bracketings:

- a. [MORE [NOT happy]] (39)
 - b. [NOT [MORE happy]]

- (39) a. [MORE [NOT happy]]
 b. [NOT [MORE happy]]
 - these bracketings correspond with two readings
 - the readings are distinguished in contexts where A and B are equally unhappy
 - only (39b) can describe such a situation.

- (40) A is unhappier than B.
 - this is incompatible with a situation where A and B are equally unhappy
 - the structure (39a) is correct for unhappier
- (41) [-er [un [happy]]]

A hypothetical case

- we predict ungooder rather than unbetter
- this follows from the structure in (30), and the lexical items in (31) (repeated from above)

better

(30) C2P
$$\Rightarrow$$
 -er

C2 C1P \Rightarrow bett-

QP \Rightarrow good

Q aP

(31)a. $<_{\text{GOOD}}/\text{good}/$, $[_{\text{QP}} \ Q \ [_{\text{aP}} \ \text{a} \ [_{\sqrt{P}} \ \sqrt{\]]]] >$ $<_{\text{BETT}}$ /bett-/, [C1P C1 GOOD]] >

- if NegP intervenes between C1P and QP, bett- can no longer spell out C1P
- this is because the syntactic tree now contains a feature Neg between C1 and Q
- as a result, C1P contains a Neg feature, which is not part of the lexical makeup of bett-
- as a result, bett- cannot spell out C1P
- in contrast, there is no problem with *un-good-er*: each exponent spells out a constituent in the syntactic tree

An actual case

Czech confirms our prediction

An actual case

Czech confirms our prediction

[un good er]

- = [more [not good]]
- worse
- = incompatible with a situation where A and B are equally bad

 $<_{\text{LEP}}$ /lep/, [C1P C1 DOBR]] >

(47)Czech POS **CMPR** snadn-ý 'easy' snaz-š-í ne-snadn-ý *ne-snaz-š-í 'difficult'

ne-snadn-ý ne-snadn-ej-š-í 'difficult'

(48)German

POS	CMPR	
gut	besser	'good'
ungut	*unbesser	'bad'
ungut	unguter	'bad'

A twist

(49)POS **CMPR** mal-ý 'small' men-š-í ne-mal-ý ne-men-š-í 'not small, big' ne-mal-ý *ne-mal-š-í

- (49)POS **CMPR** 'small' mal-ý men-š-í ne-mal-ý ne-men-š-í 'not small, big' ne-mal-ý *ne-mal-š-í
 - the suppletion is unexpected
 - the meaning is different

A twist

- (49) POS CMPR
 mal-ý men-š-í 'small'
 ne-mal-ý ne-men-š-í 'not small, big'
 ne-mal-ý *ne-mal-š-í
 - the suppletion is unexpected
 - the meaning is different

ne-men-š-í

- = [not [more small]]
- = not smaller
- = compatible with a situation where A and B are equally big

Negative adjectives spell out a Neg feature

mal-ý 'small'

(50)
$$\begin{array}{c} \text{NegP} \Rightarrow \textit{mal-} \\ \\ \text{Q} \\ \\ \text{Q} \\ \\ \text{a} \\ \\ \text{P} \end{array}$$

$$<_{
m MAL}$$
 /mal-/, [NegP Neg [QP Q [aP a [$_{
m /P}$ $_{
m /}$]]]] $>$

(51)
$$\begin{array}{c} C2P \Rightarrow -\check{s}-\\ \hline \\ C2 & C1P \Rightarrow men-\\ \hline \\ Neg & QP \\ \hline \\ Q & aP \\ \hline \\ a & \sqrt{P} \end{array}$$

$$<_{
m MEN}$$
 /men-/, [C1P C1 MAL]] $>$ $<_{
m \acute{s}}$ /- $\dot{
m \acute{s}}$ -/, [C2P C2] $>$

- because the low Neg position is already taken up by men/mal, the *ne*-prefix has to take scope in a higher position
- (52) has the bracketing [NOT [MORE [small]]]
- this bracketing accounts for the meaning of *ne-men-š-i* 'not smaller' (A and B can be equally big)
- it also accounts for the presence of root suppletion

Outline

- The Containment Hypothesis
- 2 Czech morphology
- 3 The internal structure of the comparative
- Suppletion
- **5** Suppletion meets Negation
- **6** Conclusions

Conclusions

- Bobaljik's Cmpr needs to be split up into two distinct heads/features, C1 and C2
- Czech morphology provides evidence for two distinct exponents corresponding to these two features: ěj+š
- we developed an analysis of root suppletion that accounts for the systematic absence ĕj with suppletive and shortened roots in Czech comparatives, which also allows for lexically determined cases of ĕj-absence
- the interaction of negation with suppletion provides support for our analysis

Thank you!

Pavel Caha

References

- Bobaljik, Jonathan. 2012. *Universals in comparative morphology*. Cambridge, MA: MIT Press.
- Caha, Pavel. 2016. Explaining Bobaljik's root suppletion generalization as an instance of the adjacency condition (and beyond). Ms., Masarykova Univerzita, Brno.
- Starke, Michal. 2011. Towards an elegant solution to language variation: Variation reduces to the size of lexically stored trees. Ms., Tromsø University.

