Quantity and quality in linguistics

(Or: Tackling a microvariationist's frustrations)

Jeroen van Craenenbroeck

CRISSP/KU Leuven jeroen.vancraenenbroeck@kuleuven.be

CRISSP 10 Brussels, 15 December 2016

Outline

A tale of a village and a city (and then some)

Two case studies

Case study #1: Verb clusters

Case study #2: Microvariation in C and D

Conclusion & future prospects

(1) Midsland

- Ze weet niet dat Marie gister doad gaan is.
 she knows not that Mary yesterday dead gone is 'She doesn't know Mary died yesterday.'
- b. *Ze weet niet dat Marie gister doad is gaan. she knows not that Mary yesterday dead is gone

(2) Antwerp

- Ge weet nie da Marie dood is gegaan.
 you know not that Mary dead is gone
 'You don't know Mary died.'
- b. *Ge weet nie da Marie dood gegaan is. you know not that Mary dead gone is

(3) Midsland

- a. Ik fien dastou 't niet zien mag.
 I find that.you it not see may
 'I feel you shouldn't see it.'
- b. *Ik fien dastou 't niet mag zien.I find that.you it not may see

(4) Antwerp

- a. Ik vin dagij dat nie meug zien.
 I find that.you that not may see
 'I feel you shouldn't see that.'
- b. *Ik vin dagij dat nie zien meug.I find that.you that not see may

(3) Midsland

- a. Ik fien dastou 't niet zien mag.
 I find that.you it not see may
 'I feel you shouldn't see it.'
- b. *Ik fien dastou 't niet mag zien.I find that.you it not may see

(4) Antwerp

- a. Ik vin dagij dat nie meug zien.
 I find that.you that not may see
 'I feel you shouldn't see that.'
- b. *Ik vin dagij dat nie zien meug.I find that.you that not see may
- Midsland Dutch is consistently head-final in its (two-verb) clusters, while Antwerp Dutch is consistently head-initial

 let's assume all orders are derived from an underlying (universal) head-initial structure

- let's assume all orders are derived from an underlying (universal) head-initial structure
- orders that are not strictly head-initial are derived via VP-intraposition (Barbiers 2005), implemented via an [EPP]-feature on V

- let's assume all orders are derived from an underlying (universal) head-initial structure
- orders that are not strictly head-initial are derived via VP-intraposition (Barbiers 2005), implemented via an [EPP]-feature on V
- the parameter distinguishing Midsland Dutch from Antwerp Dutch is the feature specification of V: [+EPP] in Midsland, [-EPP] in Antwerp

- let's assume all orders are derived from an underlying (universal) head-initial structure
- orders that are not strictly head-initial are derived via VP-intraposition (Barbiers 2005), implemented via an [EPP]-feature on V
- the parameter distinguishing Midsland Dutch from Antwerp Dutch is the feature specification of V: [+EPP] in Midsland, [-EPP] in Antwerp

	$V_{[-EPP]}$	$V_{[+EPP]}$
IS_DIED	\checkmark	*
DIED_IS	*	\checkmark
MAY_SEE	\checkmark	*
SEE_MAY	*	\checkmark
DIALECT	Antwerp	Midsland

	$V_{[-EPP]}$	$V_{[+EPP]}$
IS_DIED	✓	*
DIED_IS	*	\checkmark
MAY_SEE	\checkmark	*
SEE_MAY	*	\checkmark
DIALECT	Antwerp	Midsland

	$V_{[-EPP]}$	$V_{[+EPP]}$
IS_DIED	\checkmark	*
DIED_IS	*	\checkmark
MAY_SEE	\checkmark	*
SEE_MAY	*	\checkmark
DIALECT	Antwerp	Midsland

IS_DIED	*
DIED_IS	\checkmark
MAY_SEE	\checkmark
SEE_MAY	*
DIALECT	Lovendegem

	$V_{[-EPP]}$	$V_{[+EPP]}$
IS_DIED	\checkmark	*
DIED_IS	*	\checkmark
MAY_SEE	\checkmark	*
SEE_MAY	*	\checkmark
DIALECT	Antwerp	Midsland

IS_DIED	*	\checkmark
DIED_IS	\checkmark	\checkmark
MAY_SEE	\checkmark	\checkmark
SEE_MAY	*	*
DIALECT	Lovendegem	Hoek

	$V_{[-EPP]}$	$V_{[+EPP]}$
IS_DIED	\checkmark	*
DIED_IS	*	\checkmark
MAY_SEE	\checkmark	*
SEE_MAY	*	\checkmark
DIALECT	Antwerp	Midsland

IS_DIED	*	√	*
DIED_IS	\checkmark	\checkmark	\checkmark
MAY_SEE	\checkmark	\checkmark	\checkmark
SEE_MAY	*	*	\checkmark
DIALECT	Lovendegem	Hoek	Sliedrecht

	$V_{[-EPP]}$	$V_{[+EPP]}$
IS_DIED	\checkmark	*
DIED_IS	*	\checkmark
MAY_SEE	\checkmark	*
SEE_MAY	*	\checkmark
DIALECT	Antwerp	Midsland

IS_DIED	*	\checkmark	*	\checkmark
DIED_IS	\checkmark	\checkmark	\checkmark	\checkmark
MAY_SEE	\checkmark	\checkmark	\checkmark	*
SEE_MAY	*	*	\checkmark	\checkmark
DIALECT	Lovendegem	Hoek	Sliedrecht	Monster

	$V_{[-EPP]}$	$V_{[+\mathit{EPP}]}$
IS_DIED	\checkmark	*
DIED_IS	*	\checkmark
MAY_SEE	\checkmark	*
SEE_MAY	*	\checkmark
DIALECT	Antwerp	Midsland

DIALECT	Lovendegem	Hoek	Sliedrecht	Monster	Amsterdam
SEE_MAY	*	*	\checkmark	\checkmark	\checkmark
MAY_SEE	\checkmark	\checkmark	\checkmark	*	\checkmark
DIED_IS	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
IS_DIED	*	\checkmark	*	\checkmark	✓

 and the picture becomes even more messy in the case of three-verb clusters

- and the picture becomes even more messy in the case of three-verb clusters
 - (7) Ik vind dat iedereen moet kunnen zwemmen.I find that everyone must can swim.'I think everyone should be able to swim.'

- and the picture becomes even more messy in the case of three-verb clusters
 - (7) Ik vind dat iedereen moet kunnen zwemmen.I find that everyone must can swim.'I think everyone should be able to swim.'

MUST_CAN_SWIM
MUST_SWIM_CAN
CAN_MUST_SWIM
CAN_SWIM_MUST
SWIM_MUST_CAN
SWIM_CAN_MUST

- and the picture becomes even more messy in the case of three-verb clusters
 - (7) Ik vind dat iedereen moet kunnen zwemmen.I find that everyone must can swim.'I think everyone should be able to swim.'

DIALECT	Antwerp
SWIM_CAN_MUST	*
SWIM_MUST_CAN	*
CAN_SWIM_MUST	*
CAN_MUST_SWIM	*
MUST_SWIM_CAN	*
MUST_CAN_SWIM	√

- and the picture becomes even more messy in the case of three-verb clusters
 - (7) Ik vind dat iedereen moet kunnen zwemmen.I find that everyone must can swim.'I think everyone should be able to swim.'

DIALECT	Antwerp	Lies
SWIM_CAN_MUST	*	\checkmark
SWIM_MUST_CAN	*	*
CAN_SWIM_MUST	*	*
CAN_MUST_SWIM	*	*
MUST_SWIM_CAN	*	*
MUST_CAN_SWIM	√	*

- and the picture becomes even more messy in the case of three-verb clusters
 - (7) Ik vind dat iedereen moet kunnen zwemmen.I find that everyone must can swim.'I think everyone should be able to swim.'

MUST_CAN_SWIM	\checkmark	*	*
MUST_SWIM_CAN	*	*	\checkmark
CAN_MUST_SWIM	*	*	*
CAN_SWIM_MUST	*	*	*
SWIM_MUST_CAN	*	*	*
SWIM_CAN_MUST	*	\checkmark	\checkmark
DIALECT	Antwerp	Lies	Midsland

- and the picture becomes even more messy in the case of three-verb clusters
 - (7) Ik vind dat iedereen moet kunnen zwemmen.I find that everyone must can swim.'I think everyone should be able to swim.'

DIALECT	Antwerp	Lies	Midsland	Bakkeveen
SWIM_CAN_MUST	*	\checkmark	\checkmark	\checkmark
SWIM_MUST_CAN	*	*	*	\checkmark
CAN_SWIM_MUST	*	*	*	*
CAN_MUST_SWIM	*	*	*	*
MUST_SWIM_CAN	*	*	\checkmark	*
MUST_CAN_SWIM	√	*	*	*
-				

- and the picture becomes even more messy in the case of three-verb clusters
 - (8) Ik vind dat iedereen moet kunnen zwemmen. I find that everyone must can swim. 'I think everyone should be able to swim.'

MUST_CAN_SWIM	\checkmark
MUST_SWIM_CAN	\checkmark
CAN_MUST_SWIM	*
CAN_SWIM_MUST	*
SWIM_MUST_CAN	*
SWIM_CAN_MUST	\checkmark
DIALECT	Hippolytushoef

- and the picture becomes even more messy in the case of three-verb clusters
 - (8) Ik vind dat iedereen moet kunnen zwemmen. I find that everyone must can swim. 'I think everyone should be able to swim.'

DIALECT	Hippolytushoef	Langelo
SWIM_CAN_MUST	\checkmark	*
SWIM_MUST_CAN	*	\checkmark
CAN_SWIM_MUST	*	*
CAN_MUST_SWIM	*	*
MUST_SWIM_CAN	\checkmark	*
MUST_CAN_SWIM	√	\checkmark

- and the picture becomes even more messy in the case of three-verb clusters
 - (8) Ik vind dat iedereen moet kunnen zwemmen. I find that everyone must can swim. 'I think everyone should be able to swim.'

DIALECT	Hippolytushoef	Langelo	Beetaum
SWIM_CAN_MUST	\checkmark	*	\checkmark
SWIM_MUST_CAN	*	\checkmark	\checkmark
CAN_SWIM_MUST	*	*	*
CAN_MUST_SWIM	*	*	*
MUST_SWIM_CAN	\checkmark	*	\checkmark
MUST_CAN_SWIM	√	✓	√

- and the picture becomes even more messy in the case of three-verb clusters
 - (8) Ik vind dat iedereen moet kunnen zwemmen. I find that everyone must can swim. 'I think everyone should be able to swim.'

DIALECT	Hippolytushoef	Langelo	Beetgum	
SWIM_CAN_MUST	\checkmark	*	\checkmark	
SWIM_MUST_CAN	*	\checkmark	\checkmark	
CAN_SWIM_MUST	*	*	*	
CAN_MUST_SWIM	*	*	*	
MUST_SWIM_CAN	\checkmark	*	\checkmark	
MUST_CAN_SWIM	✓	✓	✓	

 in the SAND-project (Barbiers et al. (2006), Barbiers et al. (2008)) we looked at 31 cluster orders in 267 dialects of Dutch

- in the SAND-project (Barbiers et al. (2006), Barbiers et al.
 (2008)) we looked at 31 cluster orders in 267 dialects of Dutch
- when taken together these data look as follows:

The microvariationist's frustration

Recent dialect projects have made available large amounts of microvariational data, but our current theoretical tools and methodologies are ill-suited to make sense of those data.

The microvariationist's frustration

Recent dialect projects have made available large amounts of microvariational data, but our current theoretical tools and methodologies are ill-suited to make sense of those data.

Should we just give up?

The microvariationist's frustration

Recent dialect projects have made available large amounts of microvariational data, but our current theoretical tools and methodologies are ill-suited to make sense of those data.

Should we just give up?

No: even a cursory glance reveals that there are patterns in the data, that it's not just random chaos.

The microvariationist's frustration

Recent dialect projects have made available large amounts of microvariational data, but our current theoretical tools and methodologies are ill-suited to make sense of those data.

Should we just give up?

- ▶ **No**: even a cursory glance reveals that there are patterns in the data, that it's not just random chaos.
- e.g. in the case of two-verb clusters, there is no dialect that is obligatorily head-final in modal+infinitive, but obligatorily head-initial in the case of auxiliary+participle

The microvariationist's frustration

Recent dialect projects have made available large amounts of microvariational data, but our current theoretical tools and methodologies are ill-suited to make sense of those data.

Should we just give up?

- ▶ **No**: even a cursory glance reveals that there are patterns in the data, that it's not just random chaos.
- e.g. in the case of two-verb clusters, there is no dialect that is obligatorily head-final in modal+infinitive, but obligatorily head-initial in the case of auxiliary+participle

IS_DIED	√
DIED_IS	*
MAY_SEE	*
SEE_MAY	\checkmark
DIALECT	

and in three-verb clusters of the type "must can swim", two orders are systematically lacking:

and in three-verb clusters of the type "must can swim", two orders are systematically lacking:

and in three-verb clusters of the type "must can swim", two orders are systematically lacking:

 and even a zoomed in version of the Bertin-plot suggests that there is more structure to the data than there seems to be at first glance

▶ The field of linguistic dialect research is bifurcated:

- ▶ The field of linguistic dialect research is bifurcated:
 - quantitative work on dialectal variation that is not very theoretical in nature (e.g. Heeringa (2004), Spruit (2008), Heeringa and Nerbonne (2013), Wieling and Nerbonne (2015))

- ▶ The field of linguistic dialect research is bifurcated:
 - quantitative work on dialectal variation that is not very theoretical in nature (e.g. Heeringa (2004), Spruit (2008), Heeringa and Nerbonne (2013), Wieling and Nerbonne (2015))
 - theoretical work on dialectal variation that is not very quantitative in nature (e.g. Bayer (1984), Haegeman (1992), Hoekstra (1993), Penner (1994), Poletto (2000), Benincà and Poletto (2004))

- ▶ The field of linguistic dialect research is bifurcated:
 - quantitative work on dialectal variation that is not very theoretical in nature (e.g. Heeringa (2004), Spruit (2008), Heeringa and Nerbonne (2013), Wieling and Nerbonne (2015))
 - theoretical work on dialectal variation that is not very quantitative in nature (e.g. Bayer (1984), Haegeman (1992), Hoekstra (1993), Penner (1994), Poletto (2000), Benincà and Poletto (2004))

The goal of the current research project

To bring these two traditions together, and analyze dialectal variation from a perspective that is both quantitative and qualitative in nature.

Outline

A tale of a village and a city (and then some)

Two case studies

Case study #1: Verb clusters

Case study #2: Microvariation in C and D

Conclusion & future prospects

step #1 Correspondence Analysis

step #1 Correspondence Analysis

 = a technique for exploring and visualizing categorical data, "useful for identification of systematic relationships between variables and capturing the main tendencies" (Levshina (2015:369))

step #1 Correspondence Analysis

- = a technique for exploring and visualizing categorical data, "useful for identification of systematic relationships between variables and capturing the main tendencies" (Levshina (2015:369))
- starting point: raw data table

step #1 Correspondence Analysis

- = a technique for exploring and visualizing categorical data, "useful for identification of systematic relationships between variables and capturing the main tendencies" (Levshina (2015:369))
- starting point: raw data table

	Midsland	Lies	West-Terschelling	
IS_DIED	no	no	no	
DIED_IS	yes	yes	yes	
HAS_TOLD	no	no	no	
TOLD_HAS	yes	yes	yes	
MAY_SEE	no	no	yes	
SEE_MAY	yes	yes	yes	
CAN_SWIM_MUST	no	no	no	
MUST_CAN_SWIM	no	no	yes	
MUST_SWIM_CAN	yes	no	no	
				₹

step #1 Correspondence Analysis

which is converted into a distance matrix

step #1 Correspondence Analysis

which is converted into a distance matrix

	IS_DIED	DIED_IS	HAS_TOLD	TOLD_HAS	
DIED_IS	14.28				
HAS_TOLD	8.24	13.26			
TOLD_HAS	14.42	8.36	15.68		
MAY_SEE	12.60	7.68	11.53	10.72	
SEE_MAY	10.77	12.16	11.04	12.08	
CAN_SWIM_MUST	8.42	16.03	9.84	13.74	
MUST_CAN_SWIM	13.34	5.09	12.32	9.79	
MUST_SWIM_CAN	9.27	15.03	10.19	13.26	
•••					

step #1 Correspondence Analysis

which is converted into a distance matrix

	IS_DIED	DIED_IS	HAS_TOLD	TOLD_HAS
DIED_IS	14.28			
HAS_TOLD	8.24	13.26		
TOLD_HAS	14.42	8.36	15.68	
MAY_SEE	12.60	7.68	11.53	10.72
SEE_MAY	10.77	12.16	11.04	12.08
CAN_SWIM_MUST	8.42	16.03	9.84	13.74
MUST_CAN_SWIM	13.34	5.09	12.32	9.79
MUST_SWIM_CAN	9.27	15.03	10.19	13.26

 the elements in the distance matrix are represented as points in a lower-dimensional space whereby geographical distance between points corresponds (as closely as possible) to distance recorded in the distance matrix

step #2 linguistic analyses as supplementary variables

 supplementary variables are additional columns that are added to the data table

- supplementary variables are additional columns that are added to the data table
- they do not contribute to measuring the degree of correspondence between the rows (i.e. cluster orders), but can be used to interpret the data

- supplementary variables are additional columns that are added to the data table
- they do not contribute to measuring the degree of correspondence between the rows (i.e. cluster orders), but can be used to interpret the data
- the supplementary variables used in this analysis are decomposed theoretical analyses of verb cluster orders

- supplementary variables are additional columns that are added to the data table
- they do not contribute to measuring the degree of correspondence between the rows (i.e. cluster orders), but can be used to interpret the data
- the supplementary variables used in this analysis are decomposed theoretical analyses of verb cluster orders
- example: Barbiers (2005)

▶ Barbiers (2005) derives verb cluster orders as follows:

- ▶ Barbiers (2005) derives verb cluster orders as follows:
 - lacktriangle base order is uniformly head-initial ightarrow derives 12 and 123

- ▶ Barbiers (2005) derives verb cluster orders as follows:
 - lacktriangle base order is uniformly head-initial ightarrow derives 12 and 123

- ▶ Barbiers (2005) derives verb cluster orders as follows:
 - \blacktriangleright movement is VP-intraposition \rightarrow derives 21 and 231, 312 and 132, and fails to derive 213

- ▶ Barbiers (2005) derives verb cluster orders as follows:
 - \blacktriangleright movement is VP-intraposition \rightarrow derives 21 and 231, 312 and 132, and fails to derive 213

- ▶ Barbiers (2005) derives verb cluster orders as follows:
 - ▶ movement is VP-intraposition \rightarrow derives 21 and 231, 312 and 132, and fails to derive 213

- ▶ Barbiers (2005) derives verb cluster orders as follows:
 - ▶ movement is VP-intraposition \rightarrow derives 21 and 231, 312 and 132, and fails to derive 213

- ▶ Barbiers (2005) derives verb cluster orders as follows:
 - ▶ movement is VP-intraposition \rightarrow derives 21 and 231, 312 and 132, and fails to derive 213

- ▶ Barbiers (2005) derives verb cluster orders as follows:
 - VP-intraposition can pied-pipe other material → derives 321 (movement of VP₃ to specVP₁ via specVP₂ and with pied-piping of VP₂)

- ▶ Barbiers (2005) derives verb cluster orders as follows:
 - VP-intraposition can pied-pipe other material → derives 321 (movement of VP₃ to specVP₁ via specVP₂ and with pied-piping of VP₂)

• from this theoretical account we can distill the following variables:

- from this theoretical account we can distill the following variables:
 - ► [BASE-GENERATION]: can the order be base-generated?

- from this theoretical account we can distill the following variables:
 - ► [BASE-GENERATION]: can the order be base-generated?
 - ► [MOVEMENT]: can the order be derived via movement?

- from this theoretical account we can distill the following variables:
 - ► [BASE-GENERATION]: can the order be base-generated?
 - ► [MOVEMENT]: can the order be derived via movement?
 - ► [PIED-PIPING]: does the derivation involve pied-piping?

- from this theoretical account we can distill the following variables:
 - ► [BASE-GENERATION]: can the order be base-generated?
 - ► [MOVEMENT]: can the order be derived via movement?
 - ► [PIED-PIPING]: does the derivation involve pied-piping?

- from this theoretical account we can distill the following variables:
 - ► [BASE-GENERATION]: can the order be base-generated?
 - ► [MOVEMENT]: can the order be derived via movement?
 - ► [PIED-PIPING]: does the derivation involve pied-piping?

	BASE-GENERATION	MOVEMENT	PIED-PIPING	
IS_DIED	yesBase	noMvt	noPiedP	
DIED_IS	noBase	yesMvt	noPiedP	
HAS_TOLD	yesBase	noMvt	noPiedP	
TOLD_HAS	noBase	yesMvt	noPiedP	
MAY_SEE	yesBase	noMvt	noPiedP	
SEE_MAY	noBase	yesMvt	noPiedP	
CAN_SWIM_MUST	noBase	yesMvt	noPiedP	
MUST_CAN_SWIM	yesBase	noMvt	noPiedP	
***	***	•••	•••	

step #3 interpret the CA-results using the linguistic variables

step #3 interpret the CA-results using the linguistic variables

the degree of correlation between a supplementary (i.e. linguistic) variable and a dimension of the CA-plot can help to interpret that dimension and hence understand the underlying cause of variation in verb cluster ordering

step #3 interpret the CA-results using the linguistic variables

- the degree of correlation between a supplementary (i.e. linguistic) variable and a dimension of the CA-plot can help to interpret that dimension and hence understand the underlying cause of variation in verb cluster ordering
- there are various ways of measuring/visualizing those correlations:

step #3 interpret the CA-results using the linguistic variables

- the degree of correlation between a supplementary (i.e. linguistic) variable and a dimension of the CA-plot can help to interpret that dimension and hence understand the underlying cause of variation in verb cluster ordering
- there are various ways of measuring/visualizing those correlations:
 - the plot can be color-coded according to specific variables

step #3 interpret the MCA-results using the linguistic variables

- the degree of correlation between a supplementary (i.e. linguistic) variable and a dimension of the MCA-plot can help to interpret that dimension and hence understand the underlying cause of variation in verb cluster ordering
- there are various ways of measuring/visualizing those correlations:
 - the plot can be color-coded according to specific variables
 - by calculating the squared correlation ratio (η^2):

	dimension 1	dimension 2
Barbiers (2005) base generation	0.159	0.146

 using this methodology, we can determine which (parts of) analyses of verb clusters provides the best fit for the attested variation

- using this methodology, we can determine which (parts of) analyses of verb clusters provides the best fit for the attested variation
- recent new account of verb cluster variation in Dutch: Barbiers et al. (2016a)

- using this methodology, we can determine which (parts of) analyses of verb clusters provides the best fit for the attested variation
- recent new account of verb cluster variation in Dutch: Barbiers et al. (2016a)
- ▶ Barbiers et al. (2016a) derive verb cluster orders as follows:

- using this methodology, we can determine which (parts of) analyses of verb clusters provides the best fit for the attested variation
- recent new account of verb cluster variation in Dutch: Barbiers et al. (2016a)
- Barbiers et al. (2016a) derive verb cluster orders as follows:
 - there are two possible base orders: stricly ascending (12, 123) and strictly descending (21, 321)

- using this methodology, we can determine which (parts of) analyses of verb clusters provides the best fit for the attested variation
- recent new account of verb cluster variation in Dutch: Barbiers et al. (2016a)
- ▶ Barbiers et al. (2016a) derive verb cluster orders as follows:
 - there are two possible base orders: stricly ascending (12, 123) and strictly descending (21, 321)
 - participles can be adjectivized or not: if they are, they precede the verb cluster (and hence their selecting verb): PART₂-AUX₁, PART₃-MOD₁-AUX₂, INF_{IPP.2}-INF₃-AUX₁, and (ambiguously) PART₃-AUX₂-MOD₁

- using this methodology, we can determine which (parts of) analyses of verb clusters provides the best fit for the attested variation
- recent new account of verb cluster variation in Dutch: Barbiers et al. (2016a)
- Barbiers et al. (2016a) derive verb cluster orders as follows:
 - there are two possible base orders: stricly ascending (12, 123) and strictly descending (21, 321)
 - participles can be adjectivized or not: if they are, they precede the verb cluster (and hence their selecting verb): PART₂-AUX₁, PART₃-MOD₁-AUX₂, INF_{IPP.2}-INF₃-AUX₁, and (ambiguously) PART₃-AUX₂-MOD₁
 - infinitives can be nominalized or not: if they are, they precede the verb cluster (and hence their selecting verb): INF₂-MOD₁, INF₃-MOD₁-MOD₂, and (ambiguously) INF₃-MOD₂-MOD₁

- using this methodology, we can determine which (parts of) analyses of verb clusters provides the best fit for the attested variation
- recent new account of verb cluster variation in Dutch: Barbiers et al. (2016a)
- ▶ Barbiers et al. (2016a) derive verb cluster orders as follows:
 - there are two possible base orders: stricly ascending (12, 123) and strictly descending (21, 321)
 - participles can be adjectivized or not: if they are, they precede the verb cluster (and hence their selecting verb): PART₂-AUX₁, PART₃-MOD₁-AUX₂, INF_{IPP.2}-INF₃-AUX₁, and (ambiguously) PART₃-AUX₂-MOD₁
 - infinitives can be nominalized or not: if they are, they precede the verb cluster (and hence their selecting verb): INF₂-MOD₁, INF₃-MOD₁-MOD₂, and (ambiguously) INF₃-MOD₂-MOD₁
 - 4. dialects do/do not allow for interruption of the cluster by non-verbal material (requires an adjectival participle or a nominal infinitive) → yields the order 132

as before, these linguistic properties can be coded as supplementary variables in the analysis:

- as before, these linguistic properties can be coded as supplementary variables in the analysis:
 - [BASE123]: is the order compatible with an ascending base order?

- as before, these linguistic properties can be coded as supplementary variables in the analysis:
 - [BASE123]: is the order compatible with an ascending base order?
 - [BASE321]: is the order compatible with a descending base order?

- as before, these linguistic properties can be coded as supplementary variables in the analysis:
 - [BASE123]: is the order compatible with an ascending base order?
 - [BASE321]: is the order compatible with a descending base order?
 - ► [ADJPART]: does the order involve an adjectivized participle?

- as before, these linguistic properties can be coded as supplementary variables in the analysis:
 - [BASE123]: is the order compatible with an ascending base order?
 - [BASE321]: is the order compatible with a descending base order?
 - [ADJPART]: does the order involve an adjectivized participle?
 - ► [NOMINF]: does the order involve a nominalized infinitive?

- as before, these linguistic properties can be coded as supplementary variables in the analysis:
 - [BASE123]: is the order compatible with an ascending base order?
 - [BASE321]: is the order compatible with a descending base order?
 - [ADJPART]: does the order involve an adjectivized participle?
 - ► [NOMINF]: does the order involve a nominalized infinitive?
 - [CLUSTINTERR]: does the order involve cluster interruption?

- as before, these linguistic properties can be coded as supplementary variables in the analysis:
 - [BASE123]: is the order compatible with an ascending base order?
 - [BASE321]: is the order compatible with a descending base order?
 - ► [ADJPART]: does the order involve an adjectivized participle?
 - ► [NOMINF]: does the order involve a nominalized infinitive?
 - ► [CLUSTINTERR]: does the order involve cluster interruption?
- this analysis turns out to line up very nicely with the CA-based analysis of the data set:

- as before, these linguistic properties can be coded as supplementary variables in the analysis:
 - [BASE123]: is the order compatible with an ascending base order?
 - [BASE321]: is the order compatible with a descending base order?
 - ► [ADJPART]: does the order involve an adjectivized participle?
 - ► [NOMINF]: does the order involve a nominalized infinitive?
 - ► [CLUSTINTERR]: does the order involve cluster interruption?
- this analysis turns out to line up very nicely with the CA-based analysis of the data set:

η^2	dimension #1	dimension #2
BASE123	0.706	0.009
BASE321	0.312	0.096
ADJPART	0.007	0.321
NOMINF	0.454	0.073
CLUSTINTERR	0.003	0.028

 by integrating a quantitative-statistical methodology with formal-theoretical analyses, we can (a) make sense of a large and varied dataset, while at the same time (b) going beyond mere number crunching

- by integrating a quantitative-statistical methodology with formal-theoretical analyses, we can (a) make sense of a large and varied dataset, while at the same time (b) going beyond mere number crunching
- clearly, many questions remain, e.g.:

- by integrating a quantitative-statistical methodology with formal-theoretical analyses, we can (a) make sense of a large and varied dataset, while at the same time (b) going beyond mere number crunching
- clearly, many questions remain, e.g.:
 - one would like to see more evidence for the adjectival/nominal status of preverbal participles/infinitives

- by integrating a quantitative-statistical methodology with formal-theoretical analyses, we can (a) make sense of a large and varied dataset, while at the same time (b) going beyond mere number crunching
- clearly, many questions remain, e.g.:
 - one would like to see more evidence for the adjectival/nominal status of preverbal participles/infinitives
 - what about the cluster interruption parameter of Barbiers et al. (2016a)?

- by integrating a quantitative-statistical methodology with formal-theoretical analyses, we can (a) make sense of a large and varied dataset, while at the same time (b) going beyond mere number crunching
- clearly, many questions remain, e.g.:
 - one would like to see more evidence for the adjectival/nominal status of preverbal participles/infinitives
 - what about the cluster interruption parameter of Barbiers et al. (2016a)?
 - the implicational relation between pre-auxiliary participles and pre-modal infinitives discussed above doesn't yet follow from Barbiers et al. (2016a)'s analysis

Case study #2: Microvariation in C and D

note: this entire subsection is based on joint work with Marjo van Koppen

► **starting point:** ten dialect phenomena in 267 dialects of Dutch that have roughly the same geographical distribution

- ► **starting point:** ten dialect phenomena in 267 dialects of Dutch that have roughly the same geographical distribution
- complementizer agreement (CA)

- starting point: ten dialect phenomena in 267 dialects of Dutch that have roughly the same geographical distribution
- complementizer agreement (CA)
 - (16) **O-n** Bart en Lieske in t paradijs levn if-PL Bart and Lieske in the paradise live 'If Bart and Lieske are living in paradise, ...' (Gistel)

- starting point: ten dialect phenomena in 267 dialects of Dutch that have roughly the same geographical distribution
- complementizer agreement (CA)
 - (16) **O-n** Bart en Lieske in t paradijs levn if-PL Bart and Lieske in the paradise live 'If Bart and Lieske are living in paradise, ...' (Gistel)
- clitic doubling (CD)

- starting point: ten dialect phenomena in 267 dialects of Dutch that have roughly the same geographical distribution
- complementizer agreement (CA)
 - (16) **O-n** Bart en Lieske in t paradijs levn if-PL Bart and Lieske in the paradise live 'If Bart and Lieske are living in paradise, ...' (Gistel)
- clitic doubling (CD)
 - (17) da-**ze zaaile** lachen. that-they_{CLITIC} they_{STRONG} laugh 'that they are laughing.' (Wambeek)

short do replies (SDR)

short do replies (SDR)

(18) A: IJ zal nie komen. B: IJ doet.
he will not come he does
'A: He won't come. B: Yes, he will.'

(Berlare)

short do replies (SDR)

(18) A: IJ zal nie komen. B: **IJ doet**.

he will not come he does

'A: He won't come. B: Yes, he will.' (Berlare)

negative clitic (NEG)

short do replies (SDR)

(18) A: IJ zal nie komen. B: IJ doet.

he will not come he does

'A: He won't come. B: Yes, he will.'

(Berlare)

negative clitic (NEG)

(19) K en goa nie noar schole.
I NEG go not to school
'I'm not going to school.'

(Tielt)

short do replies (SDR)

(18) A: IJ zal nie komen. B: IJ doet.

he will not come he does

'A: He won't come. B: Yes, he will.'

(Berlare)

negative clitic (NEG)

(19) K en goa nie noar schole.
I NEG go not to school
'I'm not going to school.'

(Tielt)

clitics on yes and no (CYN)

short do replies (SDR)

(18) A: IJ zal nie komen. B: IJ doet.

he will not come he does

'A: He won't come. B: Yes, he will.' (Berlare)

negative clitic (NEG)

(19) K **en** goa nie noar schole.
I NEG go not to school
'I'm not going to school.'

(Tielt)

clitics on yes and no (CYN)

(20) A: Wilde nog koffie, Jan? B: Ja-k.
 want.you PART coffee Jan Yes-I
 'A: Do you want some more coffee, Jan? B: Yes.'
 (Malderen)

t 'it' as there-expletive (EXPL-T)

- t 'it' as there-expletive (EXPL-T)
 - (21) **T** en goa niemand nie dansn. it NEG goes no.one not dance 'There will be no dancing.'

(Brugge)

- t 'it' as there-expletive (EXPL-T)
 - (21) **T** en goa niemand nie dansn. it NEG goes no.one not dance 'There will be no dancing.'

(Brugge)

if as a comparative complementizer (CMPR-IF)

- t 'it' as there-expletive (EXPL-T)
 - (21) T en goa niemand nie dansn. it NEG goes no.one not dance 'There will be no dancing.'

(Brugge)

- if as a comparative complementizer (CMPR-IF)
 - (22) Zie peist daj eer ga thuis zijn **of** ik. she thinks that.you sooner go home be if I 'She thinks you'll be home sooner than me.' (Oostkerke)

- t 'it' as there-expletive (EXPL-T)
 - (21) T en goa niemand nie dansn. it NEG goes no.one not dance 'There will be no dancing.'

(Brugge)

- if as a comparative complementizer (CMPR-IF)
 - (22) Zie peist daj eer ga thuis zijn **of** ik. she thinks that.you sooner go home be if I 'She thinks you'll be home sooner than me.' (Oostkerke)
- ► the obligatory use of expletive *there* in embedded clauses and inverted main clauses (ER.OBL)

- t 'it' as there-expletive (EXPL-T)
 - (21) **T** en goa niemand nie dansn.
 it NEG goes no.one not dance
 'There will be no dancing.' (Brugge)
- if as a comparative complementizer (CMPR-IF)
 - (22) Zie peist daj eer ga thuis zijn **of** ik. she thinks that.you sooner go home be if I 'She thinks you'll be home sooner than me.' (Oostkerke)
- the obligatory use of expletive there in embedded clauses and inverted main clauses (ER.OBL)
 - (23) dat *(er) in de fabrieke nen jongen werkte that there in the factory a boy worked 'that a boy worked in the factory (Lapscheure, Haegeman (1986:3))

determiner+demonstrative in NP-ellipsis (THE+THAT)

- determiner+demonstrative in NP-ellipsis (THE+THAT)
 - (24) De die zou k ik wiln op eetn. the those would I_{CLITIC} I_{STRONG} want up eat 'I would like to eat those.' (Merelbeke)

determiner+demonstrative in NP-ellipsis (THE+THAT)

- (24) **De die** zou k ik wiln op eetn. the those would I_{CLITIC} I_{STRONG} want up eat 'I would like to eat those.' (Merelbeke)
- go get in imperatives (GO-GET)

determiner+demonstrative in NP-ellipsis (THE+THAT)

- (24) **De die** zou k ik wiln op eetn. the those would I_{CLITIC} I_{STRONG} want up eat 'I would like to eat those.' (Merelbeke)
- go get in imperatives (GO-GET)
 - (25) **Gon haalt** die bestelling ne keer!

 go_{INF} get_{IMP} that order a time

 'Go get that order!' (Ghent)

first technique used: Correspondence Analysis

- first technique used: Correspondence Analysis
- raw data table:

- first technique used: Correspondence Analysis
- raw data table:

	Brugge	Hulst	Dirksland	Ossendrecht	
CA	1	1	1	0	
CD	1	1	0	1	
SDR	0	0	0	0	
NEG	1	0	0	0	
CYN	1	1	О	0	
EXPL-T	1	0	О	0	
CMPR-IF	0	1	О	0	
ER.OBL	1	0	О	0	
THE+THAT	1	0	О	1	
GO-GET	1	0	0	1	

which is converted into a distance matrix:

which is converted into a distance matrix:

	CA	CD	SDR	CYN	NEG	EXPL-T	CMPR-IF	
CD	11.40							
SDR	10.14	7.28						
CYN	10.00	6.48	4.58					
NEG	10.63	6.08	4.69	5.56				
EXPL-T	10.04	8.30	4.24	5.56	6.16			
CMPR-IF	10.72	8.54	4.69	5.91	6.63	4.47		
THE+THAT	10.77	5.83	6.70	6.63	6.40	7.68	8.06	
ER.OBL	10.34	8.06	4.24	5.38	6.00	4.00	4.69	
GO-GET	10.72	8.30	4.89	5.91	6.32	5.29	5.09	

which is converted into a distance matrix:

	CA	CD	SDR	CYN	NEG	EXPL-T	CMPR-IF	
CD	11.40							
SDR	10.14	7.28						
CYN	10.00	6.48	4.58					
NEG	10.63	6.08	4.69	5.56				
EXPL-T	10.04	8.30	4.24	5.56	6.16			
CMPR-IF	10.72	8.54	4.69	5.91	6.63	4.47		
THE+THAT	10.77	5.83	6.70	6.63	6.40	7.68	8.06	
ER.OBL	10.34	8.06	4.24	5.38	6.00	4.00	4.69	
GO-GET	10.72	8.30	4.89	5.91	6.32	5.29	5.09	
•								

which is in turn converted into a lower-dimensional (here: 3D) representation

First dimension: sets apart complementizer agreement (CA) from all other phenomena:

First dimension: sets apart complementizer agreement (CA) from all other phenomena:

First dimension: sets apart complementizer agreement (CA) from all other phenomena:

following a.o. Haegeman and Koppen (2012), van Koppen (2005) we analyze CA as involving a phi-agreement probe on C and propose the following parameter:

First dimension: sets apart complementizer agreement (CA) from all other phenomena:

following a.o. Haegeman and Koppen (2012), van Koppen (2005) we analyze CA as involving a phi-agreement probe on C and propose the following parameter:

(26) the AgrC-parameter:

C {does/does not} have unvalued ϕ -features.

► **Second dimension:** sets apart CD and THE+THAT from all other phenomena (with CA no longer playing a role):

► **Second dimension:** sets apart CD and THE+THAT from all other phenomena (with CA no longer playing a role):

► **Second dimension:** sets apart CD and THE+THAT from all other phenomena (with CA no longer playing a role):

 we propose that CD and THE+THAT are indicative of a split D-domain, while EXPL-T, CMPR-IF, ER.OBL, GO-GET, SDR, CYN, and NEG are indicative of a split C-domain

both CD and THE+THAT involve raising of a subpart of DP into the extended left periphery of D (van Craenenbroeck and van Koppen 2008, Barbiers et al. 2016b):

both CD and THE+THAT involve raising of a subpart of DP into the extended left periphery of D (van Craenenbroeck and van Koppen 2008, Barbiers et al. 2016b):

 SDR, NEG, and CYN involve the activation of a high left-peripheral Pol(arity)-head (van Craenenbroeck 2010)

- SDR, NEG, and CYN involve the activation of a high left-peripheral Pol(arity)-head (van Craenenbroeck 2010)
- ► EXPL-T spells out a left-peripheral C-head (van Craenenbroeck 2011)

- ► SDR, NEG, and CYN involve the activation of a high left-peripheral Pol(arity)-head (van Craenenbroeck 2010)
- ► EXPL-T spells out a left-peripheral C-head (van Craenenbroeck 2011)
- ► ER.OBL: the expletive *er* 'there' can only be elided when C is sufficiently close to the subject, i.e. when the C-domain is not split

- SDR, NEG, and CYN involve the activation of a high left-peripheral Pol(arity)-head (van Craenenbroeck 2010)
- ► EXPL-T spells out a left-peripheral C-head (van Craenenbroeck 2011)
- ER.OBL: the expletive er 'there' can only be elided when C is sufficiently close to the subject, i.e. when the C-domain is not split
- ► GO-GET: *go* in imperatives spells out a high left-peripheral functional projection (cf. also McCloskey (1997:214))

- SDR, NEG, and CYN involve the activation of a high left-peripheral Pol(arity)-head (van Craenenbroeck 2010)
- ► EXPL-T spells out a left-peripheral C-head (van Craenenbroeck 2011)
- ER.OBL: the expletive er 'there' can only be elided when C is sufficiently close to the subject, i.e. when the C-domain is not split
- ► GO-GET: *go* in imperatives spells out a high left-peripheral functional projection (cf. also McCloskey (1997:214))
- CMPR-IF: dialects with CMPR-IF differ from dialects without CMPR-IF in that they have an unique form for the conditional complementizer → CMPR-IF dialects have two separate C-layers to express conditional and comparative information, whereas the other dialects bundle both features on one single head

(29) the D-parameter:

DP {does/does not} have an extended left periphery.

(30) the C-parameter

CP {does/does not} have an extended left periphery.

(29) the D-parameter:

DP {does/does not} have an extended left periphery.

(30) the C-parameter

CP {does/does not} have an extended left periphery.

ightarrow we can now examine the interaction between the three parameters we proposed

	+AgrC			
	+SPLIT C —SPLIT C			
	East & West Flanders	Nieuwmoer, Sint Lenaarts,		
+split D	(N=59)	Moerdijk		
		(N=3)		
	Opglabbeek, Sliedrecht,	Holland, Limburg,		
-split D	Hoek	Friesland, Groningen		
	(N=3)	(N=8 ₃)		
	-AgrC			
	+SPLIT C	-SPLIT C		
+split D	Flemish Brabant & Antwe	rp North Brabant		
	(N=23)	(N=21)		
-split D	Borgloon	Drenthe, Utrecht		
	(N=1)	(N=67)		

Digging a little deeper:

1. To what extent are these accidental geographical patterns?

- 1. To what extent are these accidental geographical patterns?
 - people who live close together tend to speak alike, and different from people who live further away

- 1. To what extent are these accidental geographical patterns?
 - people who live close together tend to speak alike, and different from people who live further away
 - cf. Nerbonne and Kleiweg (2007)'s Fundamental
 Dialectological Postulate: geographically proximate varieties tend to be more similar (linguistically) than distant ones

- 1. To what extent are these accidental geographical patterns?
 - people who live close together tend to speak alike, and different from people who live further away
 - cf. Nerbonne and Kleiweg (2007)'s Fundamental
 Dialectological Postulate: geographically proximate varieties tend to be more similar (linguistically) than distant ones
 - we can now quantify exactly how much of the variation is purely due to geographical distance

we start from an actual (geographical) distance matrix:

we start from an actual (geographical) distance matrix:

	Midsland	Lies	W. Terschelling	Oosterend
Lies	4.49			
W. Terschelling	8.15	12.65		
Oosterend	56.35	60.60	48.77	
Hollum	39.71	35.25	47.82	93.54
Schiermonnikoog	97.27	92.85	105.33	148.91
Ferwerd	59.98	55.80	67.68	109.13

we start from an actual (geographical) distance matrix:

	Midsland	Lies	W. Terschelling	Oosterend
Lies	4.49			
W. Terschelling	8.15	12.65		
Oosterend	56.35	60.60	48.77	
Hollum	39.71	35.25	47.82	93.54
Schiermonnikoog	97.27	92.85	105.33	148.91
Ferwerd	59.98	55.80	67.68	109.13
•••			•••	

 and measure the correlation between geographical distances and linguistic distances (using a Mantel test)

we start from an actual (geographical) distance matrix:

	Midsland	Lies	W. Terschelling	Oosterend
Lies	4.49			
W. Terschelling	8.15	12.65		
Oosterend	56.35	60.60	48.77	
Hollum	39.71	35.25	47.82	93-54
Schiermonnikoog	97.27	92.85	105.33	148.91
Ferwerd	59.98	55.80	67.68	109.13

- and measure the correlation between geographical distances and linguistic distances (using a Mantel test)
- ► r = 0.315

we start from an actual (geographical) distance matrix:

	Midsland	Lies	W. Terschelling	Oosterend
Lies	4.49			
W. Terschelling	8.15	12.65		
Oosterend	56.35	60.60	48.77	
Hollum	39.71	35.25	47.82	93.54
Schiermonnikoog	97.27	92.85	105.33	148.91
Ferwerd	59.98	55.80	67.68	109.13
***			•••	

- and measure the correlation between geographical distances and linguistic distances (using a Mantel test)
- ► r = 0.315
- i.e. there is only a fairly weak correlation between linguistic distance and geographical distance in our data set

Digging a little deeper:

2. What is the relation between the 6 phenomena that are indicative of a split C-domain?

- 2. What is the relation between the 6 phenomena that are indicative of a split C-domain?
 - we can explore the internal relations between these phenomena using association rule data mining (Spruit 2008, Piatetsky-Shapiro 1991)

 all arrows point towards either CYN, NEG, or SDR, i.e. to the polarity-related phenomena

- all arrows point towards either CYN, NEG, or SDR, i.e. to the polarity-related phenomena
- ► IF a dialect has one or more of the split C-phenomena, THEN it also always has one of the polarity-related phenomena

- all arrows point towards either CYN, NEG, or SDR, i.e. to the polarity-related phenomena
- ► IF a dialect has one or more of the split C-phenomena, THEN it also always has one of the polarity-related phenomena
- we take this to mean that polarity acts as a cue for the language learner that she is acquiring a split C-dialect

Outline

A tale of a village and a city (and then some)

Two case studies

Case study #1: Verb clusters

Case study #2: Microvariation in C and D

 combining quantitative (statistical) and qualitative (formal-theoretical) methods provides a way of tackling the microvariationist's frustration, in that it makes possible a theoretical analysis of large and highly varied dialect data sets

- combining quantitative (statistical) and qualitative (formal-theoretical) methods provides a way of tackling the microvariationist's frustration, in that it makes possible a theoretical analysis of large and highly varied dialect data sets
- future prospects:

- combining quantitative (statistical) and qualitative (formal-theoretical) methods provides a way of tackling the microvariationist's frustration, in that it makes possible a theoretical analysis of large and highly varied dialect data sets
- future prospects:
 - move from micro- to meso- and macrovariation: Dutch dialects vs. Swiss German dialects, Germanic dialects vs. Romance dialects, dialect variation vs. language variation (WALS)

- combining quantitative (statistical) and qualitative (formal-theoretical) methods provides a way of tackling the microvariationist's frustration, in that it makes possible a theoretical analysis of large and highly varied dialect data sets
- future prospects:
 - move from micro- to meso- and macrovariation: Dutch dialects vs. Swiss German dialects, Germanic dialects vs. Romance dialects, dialect variation vs. language variation (WALS)
 - find more ways of translating/adapting statistical methods (in)to theoretically relevant notions

References I

- Barbiers, Sjef. 2005. Word order variation in three-verb clusters and the division of labour between generative linguistics and sociolinguistics. In *Syntax and variation. Reconciling the biological and the social*, ed. Leonie Cornips and Karen P. Corrigan, volume 265 of *Current issues in linguistic theory*, 233–264. Amsterdam: John Benjamins.
- Barbiers, Sjef, Johan van der Auwera, Hans Bennis, Eefje Boef, Gunther De Vogelaer, and Margreet van der Ham. 2008. *Syntactische atlas van de Nederlandse dialecten. Deel II.* Amsterdam: Amsterdam University Press.
- Barbiers, Sjef, Hans Bennis, and Lotte Hendriks. 2016a. Merging verb cluster variation. Ms. Meertens Institute.
- Barbiers, Sjef, Marjo van Koppen, Hans Bennis, and Norbert Corver. 2016b. Microcomparative MOrphosyntactic REsearch (MIMORE): Mapping partial grammars of Flemish, Brabantish and Dutch. *Lingua* 178:5–31.
- Barbiers, Sjef, et al. 2006. *Dynamische syntactische atlas van de Nederlandse dialecten (dynasand)*. Meertens Institute. www.meertens.knaw.nl/sand/.
- Bayer, Josef. 1984. COMP in Bavarian syntax. The Linguistic Review 3:209-274.

References II

- Benincà, Paola, and Cecilia Poletto. 2004. Topic, focus, and V2: Defining the CP sublayers. In *The structure of CP and IP*, ed. Luigi Rizzi, 52–75. Oxford: Oxford University Press.
- van Craenenbroeck, Jeroen. 2010. *The syntax of ellipsis. Evidence from Dutch dialects*. New York: OUP.
- van Craenenbroeck, Jeroen. 2011. Germanic expletives revisited. In pursuit of Kayne's dream. Handout for an invited talk at the 26th Comparative Germanic Syntax Workshop.
- van Craenenbroeck, Jeroen, and Marjo van Koppen. 2008. Pronominal doubling in Dutch dialects: big DPs and coordinations. In *Microvariation in syntactic doubling*., ed. Sjef Barbiers, Olaf Koeneman, Marika Lekakou, and Margreet van der Ham, volume 36 of *Syntax and Semantics*, 207–249. Bingley: Emerald.
- Haegeman, Liliane. 1986. Er-sentences in West-Flemish. Ms. Université de Genève.
- Haegeman, Liliane. 1992. *Theory and description in generative syntax*. Cambridge: Cambridge University Press.
- Haegeman, Liliane, and Marjo van Koppen. 2012. Complementizer agreement and the relation between T and C. *Linguistic Inquiry* 43:441–454.
- Heeringa, Wilbert. 2004. Measuring dialect pronunciation differences using Levenshtein distance. Doctoral Dissertation, University of Groningen.

References III

- Heeringa, Wilbert, and John Nerbonne. 2013. Dialectometry. In Language and Space. An International Handbook of Linguistic Variation. Volume 3: Dutch, ed. Frans Hinskens and Johan Taeldeman, volume 30 of Handbooks of Linguistics and Communication Science, 624–645. Berlin/Boston: De Gruyter.
- Hoekstra, Jarich. 1993. Dialectal variation inside CP as parametric variation. In *Dialektsyntax*, ed. Werner Abraham and Josef Bayer, volume 5 of *Linguistische Berichte/Sonderheft*, 161–179. Opladen: Westdeutscher Verlag.
- van Koppen, Marjo. 2005. One probe, two goals: aspects of agreement in dutch dialects. Doctoral Dissertation, Universiteit Leiden.
- Levshina, Natalia. 2015. How to do linguistics with R. Data exploration and statistical analysis. Amsterdam: John Benjamins.
- McCloskey, James. 1997. Subjecthood and subject positions. In *Elements of grammar*, ed. Liliane Haegeman, 197–235. Dordrecht: Kluwer Academic Publishers.
- Nerbonne, John, and Peter Kleiweg. 2007. Toward a dialectological yardstick. *Journal of Quantitative Linguistics* 14:148–166.

References IV

- Penner, Zvi. 1994. Asking questions without CPs? On the acquisition of root wh-questions in Bernese Swiss German and Standard German. In Language acquisition studies in generative grammar, ed. Teun Hoekstra and Bonnie D. Schwartz, 177–214. Amsterdam: John Benjamins Publishing Company.
- Piatetsky-Shapiro, G. 1991. Discovery, analysis, and presentation of strong rules. In *Knowledge discovery in databases*, ed. G. Piatetsky-Shapiro and W. Frawley, 229–248. Cambridge, Massachusetts: AAAI/The MIT Press.
- Poletto, Cecilia. 2000. *The higher functional field: Evidence from Northern Italian dialects*. Oxford University Press.
- Spruit, Marco René. 2008. Quantitative perspectives on syntactic variation in Dutch dialects. Doctoral Dissertation, Universiteit van Amsterdam.
- Wieling, Martijn, and John Nerbonne. 2015. Advances in dialectometry. *Annual Review of Linguistics* 1:243–264.