
Ordering relations, partitions and Aristotelian diagrams 

In mathematics, the general notion of scalarity is most naturally associated with ordering relations, such 
as partial orders and total orders. In this paper I will investigate such ordering relations in terms of the 
type of partition they induce of their underlying logical space, and in terms of the Aristotelian diagrams 
that one can construct for them. The overall argumentation will proceed in five main steps.  

First of all, I will briefly review the most well-known Aristotelian diagram, viz. the square of opposition 
for the categorical statements of syllogistics. These statements do not seem to be directly related to an 
underlying ordering relation. They induce a partition of logical space into three cells: (i) ‘all S are P’, 
(ii) ‘some but not all S are P’ and (iii) ‘no S are P’. (Consequently, the Boolean closure of this square 
of opposition contains 23 – 2 = 6 contingent statements, i.e. it is a hexagon.) The three cells of this 
partition constitute a total ordering of logical space. 

Secondly, we turn to two Aristotelian diagrams for propositional logic, viz. the classical square of 
opposition for the complex propositions p & q, p v q and their negations, and the ‘degenerate’ square 
for the atomic propositions p, q and their negations. Again, these propositions are not directly related to 
an underlying ordering relation. The degenerate square induces a partition of logical space into four 
cells: (i) p & q, (ii) p & ~q, (iii) ~p & q and (iv) ~p & ~q. (Consequently, the Boolean closure of this 
square contains 24 – 2 = 14 contingent statements, i.e. it is a rhombic dodecahedron.) The four cells of 
this partition do not constitute any ordering of logical space, but rather exhibit a high degree of symmetry 
(they arise out of the interaction between two independent bipartitions: p/~p and q/~q.)  

Thirdly, we consider the hexagon of opposition for a total ordering relation, which was already studied 
by R. Blanché in the 1950s. This hexagon induces a partition with three cells: (i) x < y, (ii) x = y and 
(iii) x > y. (This shows that the Boolean closure of this hexagon is the hexagon itself, i.e. this hexagon 
is already Boolean closed.) The cells of this partition clearly reflect the total ordering that induced them.  

Fourthly, we move from total ordering relations to partial ordering relations, by dropping the axiom of 
completeness (which requires that x < y or x > y for all distinct x, y). Hence, in comparison to the 
tripartition induced by a total ordering, we obtain a partition with one additional cell: (iv) x and y are 
incomparable. (Consequently, the Boolean closure of the hexagon for a partial ordering is a rhombic 
dodecahedron, with 24 – 2 = 14 contingent statements.) The cells of this quadripartition clearly reflect 
the partial ordering that induced them. 

Fifthly, I will shift back to total ordering relations, and examine the axiom of transitivity more closely. 
This axiom crucially involves three elements: if x < y and y < z, then x < z. We can thus construct 
diagrams that simultaneously contain statements of the form x ? y, y ? z and x ? z, where ? is one of {<, 
=, >}. I will show that (and explain how) these statements induce a partition of logical space into exactly 
13 cells. (The Boolean closure of such a diagram would thus contain 213 – 2 = 8.190 contingent 
statements, which is far too many to be actually drawn.) The 13 cells of this partition display a high 
degree of symmetry: there are 3! = 6 cells of the form x < y < z (involving no identities), there are 6 
additional cells of the form x < y = z (involving one identity), and finally, there is one cell of the form 
x = y = z (involving three identities). To further emphasize the symmetry involved in this 13-partition, 
I will also draw a connection with the notion of a permutahedron from geometric combinatorics.  

To conclude, this paper has explored the intricate relationship between the order manifested in an 
Aristotelian diagram and the order manifested in the partition induced by that diagram.  This relationship 
can be summarized by means of the following table: 

Aristotelian diagram   induced partition     
not order-based    order-based   (cf. step 1) 
not order-based   not order-based   (cf. step 2) 
order-based    order-based   (cf. steps 3, 4)     
order-based    not order-based  (cf. step 5) 


