Phonology-free Syntax

Pavel Caha¹ Karen De Clercq² Guido Vanden Wyngaerd³

¹Masaryk University (Brno)

²FWO/U Ghent (Ghent)

³KU Leuven (Brussels)

ComSyn Leiden, 21 March 2019

Introduction

Suppletion

Phrasal spellout

Root size variation

A prediction

Czech

Latin

Conclusion

Introduction

Suppletion

Phrasal spellout

Root size variation

A prediction

Conclusion

Syntax is Phonology-Free

- Syntax is Phonology-Free
- The architecture of Late Insertion Models directly derives this fact, but it faces a problem with suppletion

- Syntax is Phonology-Free
- The architecture of Late Insertion Models directly derives this fact, but it faces a problem with suppletion
- \blacktriangleright We solve this problem, by making a distinction between roots and $\sqrt{\,}\mathrm{s}$

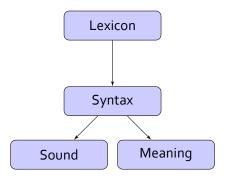
- Syntax is Phonology-Free
- ► The architecture of Late Insertion Models directly derives this fact, but it faces a problem with suppletion
- \blacktriangleright We solve this problem, by making a distinction between roots and $\sqrt{\,}\mathrm{s}$
- We develop a theory of allomorphy in terms of root size

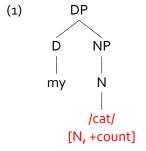
Introduction

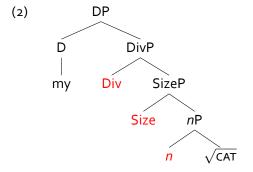
Suppletion

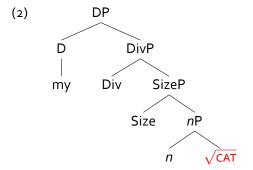
Phrasal spellout

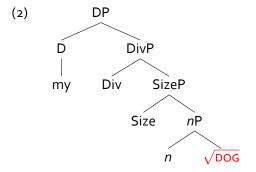
Root size variation

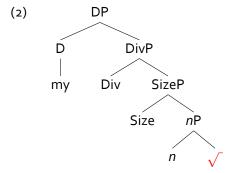

A prediction

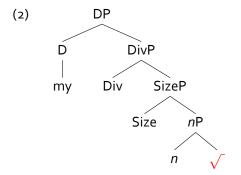

Conclusion

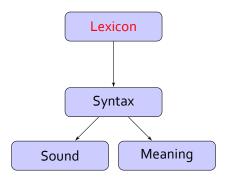

Principle of Phonology-Free Syntax

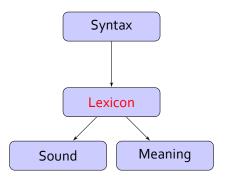

"In the grammar of a natural language, rules of syntax make no reference to phonology" (Miller, Pullum & Zwicky 1997: 68)


"No phonological properties of roots interact with the principles or computations of syntax" (Marantz 1996: 16)









"A root is what is left when all morphological structure has been wrung out of a form" (Aronoff 1994: 40)

Phonology-Free Syntax = Universal Syntax

"[I]t is assumed here that at LF, DS, and SS terminal nodes consist exclusively of morphosyntactic/semantic features and lack phonological features. The morphosyntactic features at these levels are drawn from a set made available by Universal Grammar (we are unaware of any arguments that language-specific features are necessary at these syntactic levels)." (Halle & Marantz 1993: 121)

The picture so far:

ightharpoonup There is only one $\sqrt{\ }$

The picture so far:

- ightharpoonup There is only one $\sqrt{\ }$
- ightharpoonup has no grammatical, phonological, or semantic properties

The picture so far:

- ► There is only one √
- ightharpoonup has no grammatical, phonological, or semantic properties
- Halle & Marantz (1993); Marantz (1996; 1997); De Belder & Van Craenenbroeck (2015)

An alternative view:

 Roots need to be individuated, through the use of numerical indices (Pfau 2000; 2009; Harley 2014), or a phonological index (Borer 2013)

An alternative view:

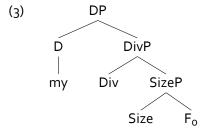
- Roots need to be individuated, through the use of numerical indices (Pfau 2000; 2009; Harley 2014), or a phonological index (Borer 2013)
- ► There is a potential infinity of different \sqrt{s}

An alternative view:

- Roots need to be individuated, through the use of numerical indices (Pfau 2000; 2009; Harley 2014), or a phonological index (Borer 2013)
- ▶ There is a potential infinity of different \sqrt{s}
- ► Technically, the syntax is phonology-free, but it's clear that the index merely serves to uniquely tie a particular $\sqrt{\text{(e.g. }\sqrt{532})}$ to a particular lexical item (e.g. cat), including its phonology

This talk

lacktriangle we make the single $\sqrt{\ }$ approach compatible with root suppletion


Key ingredients:

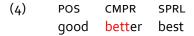
- phrasal spellout
- a distinction between
 - roots: lexical items (such as book, smart), which spell out multiple syntactic nodes
 - ► √: a root in narrow syntax

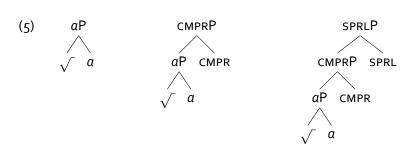
Parenthesis

- lackbox We use $\sqrt{\ }$ for easy comparability with existing proposals in the literature
- We don't believe the presyntactic lexicon contains a $\sqrt{\ }$, nor categorising heads
- Instead, it's features all the way down

Parenthesis

Introduction


Suppletion


Phrasal spellout

Root size variation

A prediction

Conclusion

- (6) a. $\sqrt{\quad \Leftrightarrow \quad bett-/_ \] a \] CMPR \]$ b. $\sqrt{\quad \Leftrightarrow \quad good}$

(6) a.
$$\sqrt{\ \Leftrightarrow\ bett-/\ }]a]CMPR]$$

b. $\sqrt{\ \Leftrightarrow\ good}$

(7) The Elsewhere Condition forces a contextually-restricted allomorph (6a) to block insertion of a context-free allomorph of the same root (6b), when the context for insertion is met (Bobaljik 2012: 10)

(8) a. $\sqrt{\ \Leftrightarrow\ bett-/\ }$ $a \in \mathcal{P}$ [CMPR] b. $\sqrt{\ \Leftrightarrow\ good, nice, happy, small, intelligent, tall, ...$

Solution I

Root suppletion does not exist (Marantz 1997)

- (9) a. GOOD \Leftrightarrow bett-/__] a] CMPR]
 - b. GOOD \Leftrightarrow *good*
- (10) $\sqrt{} \Leftrightarrow \text{nice, happy, small, intelligent, tall, ...}$

Solution II

There is an infinity of different $\sqrt{\,}$ s

- (11) a. $\sqrt{\text{GOOD}} \Leftrightarrow bett-/\underline{\hspace{0.2cm}}] \alpha$] CMPR]
 - b. $\sqrt{\text{GOOD}} \Leftrightarrow good$
- (12) a. $\sqrt{\text{NICE}}$ \Leftrightarrow nice
 - b. $\sqrt{\text{HAPPY}}$ \Leftrightarrow happy
 - c. $\sqrt{\mathsf{SMALL}}$ \Leftrightarrow small
 - d. $\sqrt{\mathsf{INTELLIGENT}} \Leftrightarrow \mathsf{intelligent}$
 - e. $\sqrt{\mathsf{TALL}}$ \Leftrightarrow tall
 - f.

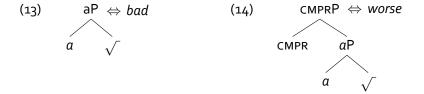
Solution II

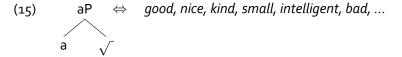
There is an infinity of different \sqrt{s}

- (11) a. $\sqrt{\text{GOOD}} \Leftrightarrow bett-l_]a]\text{CMPR}]$ b. $\sqrt{\text{GOOD}} \Leftrightarrow good$ (12) a. $\sqrt{\text{NICE}} \Leftrightarrow nice$ b. $\sqrt{\text{HAPPY}} \Leftrightarrow happy$ c. $\sqrt{\text{SMALL}} \Leftrightarrow small$ d. $\sqrt{\text{INTELLIGENT}} \Leftrightarrow intelligent$ e. $\sqrt{\text{TALL}} \Leftrightarrow tall$ f. ...
 - Phonology sneaks in through the back door!

In a nutshell

Introduction

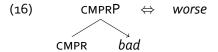

Suppletion


Phrasal spellout

Root size variation

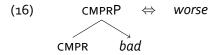
A prediction

Conclusion

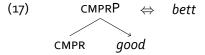

How do we avoid that *worse* will be inserted in any comparative environment?

How do we avoid that *worse* will be inserted in any comparative environment?

pointers


How do we avoid that *worse* will be inserted in any comparative environment?

pointers



How do we avoid that *worse* will be inserted in any comparative environment?

pointers

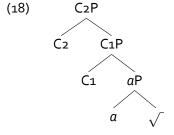
worse only gets inserted if bad was inserted at an earlier cycle

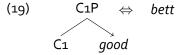
In a nutshell

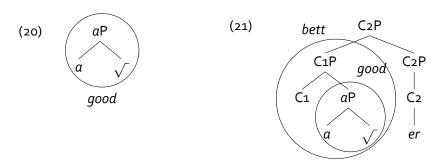
Introduction

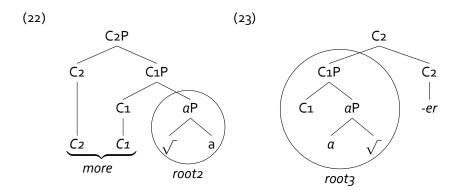
Suppletion

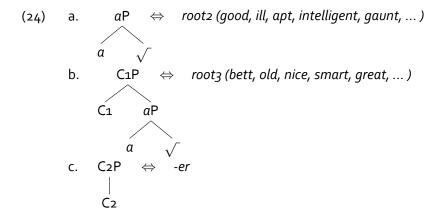
Phrasal spellout

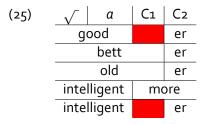

Root size variation

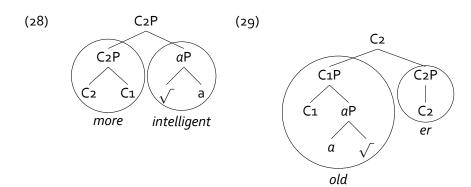

A prediction


Conclusion

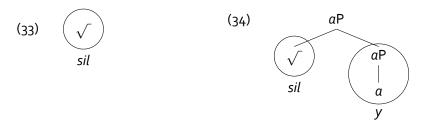

Root suppletion in a single $\sqrt{}$ theory

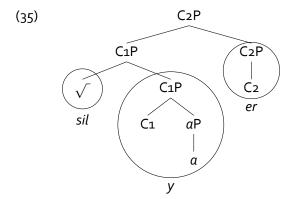

- roots vary in size
- suppletive roots are larger than nonsuppletive ones
- CMPR = C1 + C2

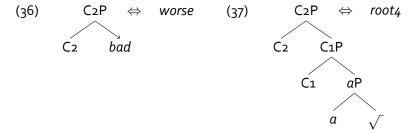


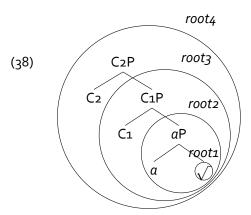



(26) The Superset Principle (Starke 2009)
A lexically stored tree L matches a syntactic node S iff L contains the syntactic tree dominated by S as a subtree


- (26) The Superset Principle (Starke 2009)
 A lexically stored tree L matches a syntactic node S iff L contains the syntactic tree dominated by S as a subtree
- (27) Faithfulness Restriction (FR) A spellout α may overwrite an earlier spellout β iff
 - a. α contains a pointer to β
 - b. $\alpha = \beta$




(30) Root Suppletion Generalisation (Bobaljik 2012: 3)
Root suppletion is limited to synthetic (i.e., morphological)
comparatives.


lucky	happy
slimy	dizzy
crappy	silly
arty	nifty
windy	sloppy
thorny	tidy
healthy	pretty
beardy	happy
kinky	bonny
bloody	busy
cloudy	canny
bony	bawdy
touchy	phoney
chirpy	horny
dirty	cheeky
	slimy crappy arty windy thorny healthy beardy kinky bloody cloudy bony touchy chirpy

- (39) a. root1: appears with an overt a in the positive
 - b. $root_2$: no overt a, full comparative marking
 - c. root3: no overt a, reduced comparative marking
 - d. root4: no overt a, no comparative marking

In a nutshell

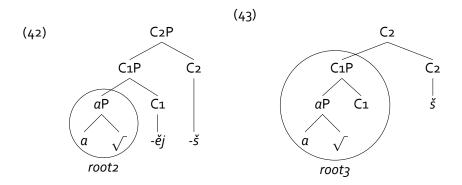
Introduction

Suppletion

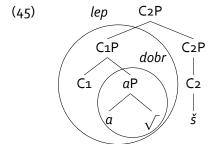
Phrasal spellout

Root size variation

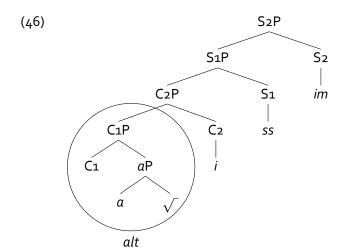
A prediction

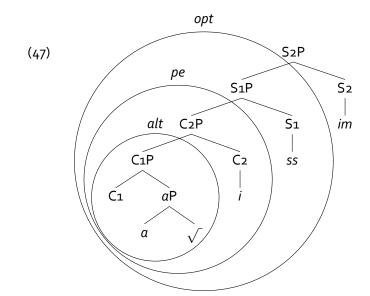

Conclusion

Prediction


In cases where suppletion co-occurs with overt marking, the overt marking tends to be 'reduced', often a substring of a different, nonreduced marker.

(40)			POS	CMPR		
	a.	ějš-í	chab-ý	chab- <mark>ějš</mark> -í	'weak'	root2
	b.	š-í	slab-ý	slab- š -í	'weak'	root3
	C.	-í	hez-k-ý	hez-čí	'pretty'	root1
	d.	-í	ostr-ý	ostř -í	`sharp'	root4


(41)	CMPR ADJ	CMPR ADV	
	chab-ěj-š-í	chab- <mark>ěj</mark> -i	'weak'
	rychl-ej- <mark>š</mark> -í	rychl- <mark>ej</mark> -i	'fast'
	červen- <mark>ěj-š</mark> -í	červen- <mark>ěj</mark> -i	`red'



(44)	POS	CMPR	
	dobr-ý	lep-š-í	'good'
	velk-ý	vět- <mark>š</mark> -í	'big'
	dlouh-ý	del- <mark>š</mark> -í	'long'
	špatn-ý	hor-š-í	'bad'
	mal-ý	men- <mark>š</mark> -í	'little, small'

	POS	CMPR	SPRL		GLOSS	marking in SPRL
a.	alt-us	alt-i-or	alt-i-ss-im-us		'tall'	full marking
b.	mal-us	pe- or	pe- 🧐	ss-im-us	'bad'	sprl lacks -i
C.	bon-us	mel-i-or	opt-	im-us	'good'	SPRL lacks <i>-i-ss</i>
d.	magn-us	ma-i-or	max-	im-us	'big'	SPRL lacks -i-ss
e.	parv-us	min- or	min-	im-us	'small'	SPRL lacks -i-ss
f.	mult-us	plūs	plūr-	im-us	'much'	SPRL lacks -i-ss

In a nutshell

Introduction

Suppletion

Phrasal spellout

Root size variation

A prediction

Conclusion

Conclusion

- Syntax is Phonology-Free
- Suppletion involves
 - phrasal spellout
 - a split CMPR
- ▶ Allomorphy is explained in terms of variations in root size

References

- Aronoff, M. 1994. Morphology by Itself: Stems and inflectional classes. Cambridge, MA: MIT Press.
- BOBALJIK, J. 2012. *Universals In Comparative Morphology*. Cambridge, MA: MIT Press.
- BORER, H. 2013. *Taking Form*. Oxford: Oxford University Press.
- DE BELDER, M. & VAN CRAENENBROECK, J. 2015. How to merge a root. *Linguistic Inquiry* 46, 625 655.
- Halle, M. & Marantz, A. 1993. Distributed morphology and the pieces of inflection. *The View from Building 20*, eds. K. Hale & J. Keyser, 111–176. Cambridge, MA: MIT Press.
- HARLEY, H. 2014. On the identity of roots. *Theoretical Linguistics* 40, 225–276.
- MARANTZ, A. 1996. Cat as a phrasal idiom: consequences of late insertion in Distributed Morphology. Ms., MIT.
- MARANTZ, A. 1997. No escape from syntax: Don't try morphological analysis in the privacy of your own lexicon. *University of Pennsylvania Working Papers in Linguistics*, vol. 4, eds. A. Dimitriadis, L. Siegel, C. Surek-Clark & A. Williams, 201–225. University of Pennsylvania.
- MILLER, P., PULLUM, G. & ZWICKY, A. 1997. The principle of phonology-free syntax: four apparent counterexamples in French. *Journal of Linguistics* 33, 67–90.
- PFAU, R. 2000. Features and categories in language production. Ph.D. thesis, Johann Wolfgang Goethe-Universität, Frankfurt am Main.
- PFAU, R. 2009. Grammar as processor: a distributed morphology account of spontaneous speech errors. Amsterdam: Benjamins.
- STARKE, M. 2009. Nanosyntax: A short primer to a new approach to language. *Nordlyd* 36, 1–6.