Dittongo mobile and g verbs
 Reducing root allomorphy in Italian verbs

Edoardo Cavirani
KU Leuven
28 January 2021

In a nutshell

- Broad theoretical claims
i. No need PH-conditioned allomorphy, phonology is enough
ii. No DM-based approaches, they are not restrictive enough

In a nutshell

- Broad theoretical claims
i. No need PH-conditioned allomorphy, phonology is enough
ii. No DM-based approaches, they are not restrictive enough
- Specific goals of the talk
i. Provide a single-UR account of
- Dittongo mobile
- g-verbs distribution
- Their complementary distribution

In a nutshell

- Broad theoretical claims
i. No need PH-conditioned allomorphy, phonology is enough
ii. No DM-based approaches, they are not restrictive enough
- Specific goals of the talk
i. Provide a single-UR account of
- Dittongo mobile
- g-verbs distribution
- Their complementary distribution
ii. Show how this account betters previous analysis
- Single-UR (Lampitelli 2017)
- PH-conditioned lexical allomorphy (Pirelli \& Battista 2000, Maiden 2001, Burzio 2014)

Dittongo mobile

- sedere 'to sit' IND.PRS

	SG	PL
1	'sje:do	se'dja:mo
2	'sje:di	se'de:te
3	'sje:de	'sjedono

Dittongo mobile

- sedere 'to sit' IND.PRS

	SG	PL
1	'sje:do	se'dja:mo
2	'sje:di	se'de:te
3	'sje:de	'sj $\boldsymbol{\varepsilon}$ dono

- morire 'to die' IND.PRS

	SG	PL
1	'mwכ:jo	mo'rja:mo
2	'mwari	mo'riste
3	'mwa:re	'mwכjono

Dittongo mobile

- 'je/'wo ~e/o

Dittongo mobile

- 'je/'wo ~e/o
- Not all e/o become 'je/'wo
- be'vja:mo 'we drink' ~ 'be:vo 'I drink' vs *'bje:vo
- vo'tja:mo 'we vote' ~ 'vo:to 'I vote' vs *'vwo:to

Dittongo mobile

- 'je/'wo ~e/o
- Not all e/o become 'je/'w
- be'vja:mo 'we drink' ~ 'be:vo 'I drink' vs *'bje:vo
- vo'tja:mo 'we vote' ~ 'vo:to 'I vote' vs *'vwosto
- Not all 'je/'ws become e/o
- 'pje:go 'I fold' ~ pje'gja:mo 'we fold' vs *pe'gja:mo
- 'swo:no 'I play' ~ swo'nja:mo 'we play' vs *so'nja:mo

Dittongo mobile

- 'je/'wo ~e/o
- Not all e/o become 'je/'wo
- be'vja:mo 'we drink' ~ 'be:vo 'I drink' vs *'bje:vo
- vo'tja:mo 'we vote' ~ 'vo:to 'I vote' vs *'vwo:to
- Not all 'je/'wo become e/o
- 'pje:go 'l fold' ~ pje'gja:mo 'we fold' vs *pe'gja:mo
- 'swo:no 'I play' ~ swo'nja:mo 'we play' vs *so'nja:mo
- 6 verbs
- II class $(\mathrm{TH}=e)$: sedere 'to sit', tenere 'to hold', volere 'to want', dolere 'to hurt'
- III class ($\mathrm{Th}=i$): venire 'to come', morire 'to die'

g-verbs

- rimanere 'to remain' IND.PRS

	SG	PL
1	ri'maygo	rima'nja:mo
2	ri'ma:ni	rima'ne:te
3	ri'ma:ne	ri'majgono

g-verbs

- rimanere 'to remain' IND.PRS

	SG	PL
1	ri'mango	rima'nja:mo
2	ri'ma:ni	rima'ne:te
3	ri'ma:ne	ri'mangono

- rimanere 'to remain' SBJ.PRS

	SG	PL
1	ri'mayga	rima'nja:mo
2	ri'mayga	rima'nja:te
3	ri'maŋga	ri'mangano

g-verbs

- $\varnothing \sim \mathrm{g} /$ _ o,a
- Not all C-o,a become Cg-o,a (C = sonorant)

g-verbs

- $\varnothing \sim \mathrm{g} /$ _ o, a
- Not all C-o,a become Cg-o,a ($\mathbf{C}=$ sonorant $)$
$-\sqrt{\text { FIN }}$ 'end' $>$ fi'n-isc- $\mathbf{o}_{\text {ISG. Prs.Ind }}$ vs $*$ 'fing- $\mathbf{o}_{\text {lsG. Prs. Ind }}$
- 9 verbs
- II class $(\mathrm{Th}=e)$: tenere 'to hold', svellere 'to pluck out', valere 'to be worth, count', porre 'to put, set', rimanere 'to stay, remain', sciogliere 'to dissolve', togliere 'to remove', dolere 'to hurt'
- III class $(\mathrm{Th}=i)$: venire 'to come', salire 'to go up'

Dittongo mobile \& g-verbs

- tenere 'to hold' IND.PRS

	SG	PL
1	'tعŋgo	te'nja:mo
2	'tje:ni	te'ne:te
3	'tje:ne	'tعクgono

Dittongo mobile \& g-verbs

- Diphthong-g complementary distribution
- 'tengo vs *'tjègo (cf. 'tje:ni)

Dittongo mobile \& g-verbs

- Diphthong-g complementary distribution
- 'tengo vs *'tjıŋgo (cf. 'tje:ni)
- 3 verbs
- II class $(\mathrm{TH}=e)$: tenere 'to hold', dolere 'to hurt'
- III class $(\mathrm{TH}=i)$: venire 'to come'

Explananda

- Dittongo mobile
- 'je/'wo ~e/o
- g-verbs
- $\varnothing \sim \mathbf{g}$ (with root-final C resyllabification)
- Dittongo mobile \& g-verbs
- Diphthong-g complementary distribution

Preview of the analysis

i. Dittongo mobile

- The glide of dittongo mobile - G - belongs to a complex onset
- G surfaces only if licensed by ${ }^{\prime} \mathrm{V}$:

Preview of the analysis

i. Dittongo mobile

- The glide of dittongo mobile - G - belongs to a complex onset
- G surfaces only if licensed by 'V:
ii. g-verbs
- g is a floater belonging to the ROOT
- g surfaces only if licensed by $\mathrm{V}_{\text {[-front] }}$ and associated to C

Preview of the analysis

i. Dittongo mobile

- The glide of dittongo mobile - G - belongs to a complex onset
- G surfaces only if licensed by 'V:
ii. g-verbs
- g is a floater belonging to the ROOT
- g surfaces only if licensed by $\mathrm{V}_{[\text {-front] }}$ and associated to C
iii. Dittongo mobile-g complementary distribution
- g forces Root-final C resyllabification
- Root-final C prevents 'V lengthening
- No 'V lengthening, dittongo mobile's G pronunciation

Table of Contents

Hypotheses

Theoretical toolkit

Analysis

Conclusions

Hypotheses - Dittongo mobile

i. Rising diph are 'complex O' (Marotta 1988, Kramer 2009)

- Acoustic measurements (Salza 1988)
- GV words select the pre-C Det (Loporcaro \& Bertinetto 2005)
- *TRGV
- Exception: TR-jamo 1PL.PRS.IND/SBJ , TR-jate $2_{2 \text { PL.PRS. } . \text { BJ }}$

Hypotheses - Dittongo mobile

i. Rising diph are 'complex O' (Marotta 1988, Kramer 2009)

- Acoustic measurements (Salza 1988)
- GV words select the pre-C Det (Loporcaro \& Bertinetto 2005)
- *TRGV
- Exception: TR-jamo $1_{1 \text { PL.PRS.IND/SBJ }}$, TR-jate $2_{2 \mathrm{PL.PRS} . \mathrm{SBJ}}$
ii. Non-alternating diph as CGV vs dittongo mobile as CGV
- G surfaces only if followed, i.e. licensed by 'V:

Hypotheses - g-verbs

i. g is stored in the UR of the relevant roots
ii. g is a floater
iii. The presence of |I| (in a V) blocks the licensing of g's |U|

- g can only be licensed by o, a (Fanciullo 1998, Burzio 2004, Lampitelli 2019)

Hypotheses - Dittongo mobile - g-verbs interaction

i. g-surfacing pushes ROOT-final n, r, l backwards

- Scheer (2016, on Hungarian): "/-i/ moves to the onset of the CV unit that is endowed with [due to] harmonic pressure"
- Faust \& Lampitelli (tomorrow): "multiple correspondence, whereby the melody lexically associated to x_{1} is realized by x_{2} "

Hypotheses - Dittongo mobile - g-verbs interaction

i. g-surfacing pushes ROOT-final n, r, I backwards

- Scheer (2016, on Hungarian): "/-i/ moves to the onset of the CV unit that is endowed with [due to] harmonic pressure"
- Faust \& Lampitelli (tomorrow): "multiple correspondence, whereby the melody lexically associated to x_{1} is realized by x_{2} "
ii. /'C(G)V:/ \rightarrow /'C(G)VC/ \rightarrow ['CVC]

Hypotheses - Dittongo mobile - g-verbs interaction

i. g-surfacing pushes ROOT-final n, r, I backwards

- Scheer (2016, on Hungarian): "/-i/ moves to the onset of the CV unit that is endowed with [due to] harmonic pressure"
- Faust \& Lampitelli (tomorrow): "multiple correspondence, whereby the melody lexically associated to x_{1} is realized by x_{2} "
ii. /'C(G)V:/ \rightarrow /'C(G)VC/ \rightarrow ['CVC]
iii. ' V : is a stronger licensor than ' V

Hypotheses - Licensing

- Lic strength \propto complexity (Cyran 2008, 2010)
- Full $V>$ ə $>$ EN
- Complexity qua prosodic prominence
- Mid vowels are not stronger than corner vowels

Hypotheses - Licensing

- Lic strength \propto complexity (Cyran 2008, 2010)
- Full $V>$ ə $>$ EN
- Complexity qua prosodic prominence
- Mid vowels are not stronger than corner vowels
- V Lic TR \Rightarrow 'V Lic TR, *'V Lic TR \Rightarrow V Lic TR (Harris 1997)
- Br. Port. ['livru] > ['livu] 'book'
- Palmoli ['kwellə] 'that ${ }_{\text {F.PL }}$ vs [.kəllə'frmmənə] 'that ${ }_{\text {F.PL }}$ woman $_{\text {F.PL }}{ }^{\prime}$

Hypotheses - Licensing

i. Branchingness contributes to complexity calculation

- 'CVi $\mathbf{i V V}_{\mathbf{i}}>{ }^{\prime} \mathbf{C V C} \varnothing>C V$
- Language-specific cut-off point

Table of Contents

Hypotheses

Theoretical toolkit

Analysis

Conclusions

Theoretical toolkit

- Element Theory (Backley 2011)
- Strict CV (Lowenstamm 1999, Scheer 2004)
- Complexity Scales and Licensing Strength (Cyran 2003, 2010)
- Stress as CV (modified version of Larsen 1998, QT)

Theoretical toolkit

- Element Theory (Backley 2011)
- Strict CV (Lowenstamm 1999, Scheer 2004)
- Complexity Scales and Licensing Strength (Cyran 2003, 2010)
- Stress as CV (modified version of Larsen 1998, QT)
- Turbidity Theory (Goldrick 2001)
- Projection: skeleton-to-melody (\downarrow)
- Defined at UR
- Cannot be modified

Theoretical toolkit

- Element Theory (Backley 2011)
- Strict CV (Lowenstamm 1999, Scheer 2004)
- Complexity Scales and Licensing Strength (Cyran 2003, 2010)
- Stress as CV (modified version of Larsen 1998, QT)
- Turbidity Theory (Goldrick 2001)
- Projection: skeleton-to-melody (\downarrow)
- Defined at UR
- Cannot be modified
- Pronunciation: melody-to-skeleton (\uparrow)
- Defined at UR
- Can be modified (deleted, added, moved)

Theoretical toolkit

TT representations (Cavirani \& van Oostendorp 2017, 2019)

Table of Contents

Hypotheses

Theoretical toolkit

Analysis

Conclusions

Non-alternating diphthong

- $\sqrt{\text { PIEG }}$ 'fold'

Non-alternating diphthong

- $\sqrt{\text { PIEG }}$ 'fold'

$\begin{array}{cccccc}C_{1} & V_{1} & C_{2} & V_{2} & C_{3} & V_{3} \\ \uparrow & & \imath & \uparrow & \hat{\imath} & \\ \mathrm{p} & & & \mathrm{j} & \varepsilon & \mathrm{g}\end{array}$

- 2PL.IND.PRS: $\sqrt{ }+$ floating $a_{\mathrm{TH}}+\mathrm{C}_{\mathrm{t}} \mathrm{V}_{\mathrm{e} 2 \mathrm{PL}} \Leftrightarrow$ [pje'ga:te]

Non-alternating diphthong

- $\sqrt{\text { PIEG }}$ 'fold'

$\begin{array}{cccccc}C_{1} & V_{1} & C_{2} & V_{2} & C_{3} & V_{3} \\ \uparrow & & \imath & \uparrow & \hat{\imath} & \\ \mathrm{p} & & & \mathrm{j} & \varepsilon & \mathrm{g}\end{array}$

- 2PL.IND.PRS: $\sqrt{ }+$ floating $a_{\mathrm{TH}}+\mathrm{C}_{\mathrm{t}} \mathrm{V}_{\mathrm{e} 2 \mathrm{PL}} \Leftrightarrow$ [pje'ga:te]

- 1SG.IND.PRS: $\sqrt{ }+$ floating $o_{1 \mathrm{SG}} \Leftrightarrow$ ['pje:go]

Dittongo mobile

- $\sqrt{\text { PIEG }}$ 'fold'

- $\sqrt{\text { SIED }}$ 'sit' - Dittongo mobile

- Non-alternating diphthong
- C_{2} has both \uparrow and $\downarrow \Rightarrow$ always pronounced \Rightarrow no Lic required

Dittongo mobile

- $\sqrt{\text { PIEG }}$ 'fold'

- $\sqrt{\text { SIED }}$ 'sit' - Dittongo mobile

- Non-alternating diphthong
- C_{2} has both \uparrow and $\downarrow \Rightarrow$ always pronounced \Rightarrow no Lic required
- Dittongo mobile
- C_{2} has only $\downarrow \Rightarrow$ pronounced if Lic
$-\mathrm{V}_{2}$ Lic $>\mathrm{x}, \mathrm{x} \propto$ complexity

Dittongo mobile

- 2PL.IND.PRS: $\sqrt{ }+$ floating $e_{\mathrm{TH}}+\mathrm{C}_{\mathrm{t}} \mathrm{V}_{\mathrm{e} \text { 2PL }} \Leftrightarrow$ [se'de:te]

- V_{2} is unstressed \Rightarrow weak licensor
- V_{2} cannot Lic $C_{2} \Rightarrow$ no j-to- $C_{2} \uparrow \Rightarrow$ silent j

Dittongo mobile

- 1SG.IND.PRS: $\sqrt{ }+$ floating $o_{1 \mathrm{SG}} \Leftrightarrow$ ['sje:do]

- V_{2} is stressed and long \Rightarrow strong(est) licensor
- Branchingness adds to complexity
- V_{2} Lic $\mathrm{C}_{2} \Rightarrow j$-to- $\mathrm{C}_{2} \uparrow$ insertion $\Rightarrow j$ pronunciation

Dittongo mobile \& g

- $\sqrt{\text { TIEN }^{6}}{ }^{\prime}$ hold'

g
- Floating $g \Rightarrow$ neither \downarrow nor \uparrow

Dittongo mobile \& g

$-\sqrt{\text { TIEN }^{G}}{ }^{\prime}$ 'hold'

g

- Floating $g \Rightarrow$ neither \downarrow nor \uparrow
- Pronounced if
- Licensed
- Associated to C

Dittongo mobile \& g

- 2PL.IND.PRS: $\sqrt{ }+$ floating $e_{\mathrm{TH}}+\mathrm{C}_{\mathrm{t}} \mathrm{V}_{\mathrm{e} 2 \mathrm{PL}} \Leftrightarrow$ [te'ne:te]

g
- V_{2} is unstressed \Rightarrow weak licensor
- V_{2} cannot Lic $\mathrm{C}_{2} \Rightarrow$ no j-to- $\mathrm{C}_{2} \uparrow \Rightarrow$ silent j

Dittongo mobile \& g

- 2PL.IND.PRS: $\sqrt{ }+$ floating $e_{\mathrm{TH}}+\mathrm{C}_{\mathrm{t}} \mathrm{V}_{\mathrm{e} \text { 2PL }} \Leftrightarrow$ [te'ne:te]

- No free C for g
- 'V used by $e \Rightarrow$ 'C unavailable

Dittongo mobile \& g

- 2PL.IND.PRS: $\sqrt{ }+$ floating $e_{\mathrm{TH}}+\mathrm{C}_{\mathrm{t}} \mathrm{V}_{\mathrm{e} 2 \mathrm{PL}} \Leftrightarrow$ [te'ne:te]

- No free C for g
- 'V used by $e \Rightarrow$ 'C unavailable
- *te'negte
- *gt
- No g licensor (EN too weak to Lic g)

Dittongo mobile \& g

- 2PL.IND.PRS: $\sqrt{ }+$ floating $e_{\mathrm{TH}}+\mathrm{C}_{\mathrm{t}} \mathrm{V}_{\mathrm{e} 2 \mathrm{PL}} \Leftrightarrow$ [te'ne:te]

- No free C for g
- 'V used by $e \Rightarrow$ 'C unavailable
- *te'negte
- *gt
- No g licensor (EN too weak to Lic g)
- g stays afloat

Dittongo mobile \& g

- 3SG.IND.PRS: $\sqrt{ }+$ floating $e_{3 \mathrm{SG}} \Leftrightarrow$ ['tje:ne]

- V_{2} is stressed and long \Rightarrow strong(est) licensor
- Branchingness adds to complexity
- V_{2} Lic $\mathrm{C}_{2} \Rightarrow j$-to- $\mathrm{C}_{2} \uparrow$ insertion $\Rightarrow j$ pronunciation
- $\mathrm{C}_{2}-\mathrm{C}_{1} \mathrm{IOL} \Rightarrow \mathrm{V}_{1}$ trapping

Dittongo mobile \& g

- 3SG.IND.PRS: $\sqrt{ }+$ floating $e_{3 \mathrm{SG}} \Leftrightarrow$ ['tje:ne]

- No free C for g
- 'V used by $\varepsilon \Rightarrow$ 'C unavailable

Dittongo mobile \& g

- 3SG.IND.PRS: $\sqrt{ }+$ floating $e_{3 \mathrm{SG}} \Leftrightarrow$ ['tje:ne]

- No free C for g
- 'V used by $\varepsilon \Rightarrow$ 'C unavailable
- *'tegne
$-{ }^{*} g n$
- No g licensor (EN too weak to Lic g)

Dittongo mobile \& g

- 3SG.IND.PRS: $\sqrt{ }+$ floating $e_{3 \mathrm{SG}} \Leftrightarrow$ ['tje:ne]

- No free C for g
- 'V used by $\varepsilon \Rightarrow$ 'C unavailable
- *'tegne
$\rightarrow *_{g n}$
- No g licensor (EN too weak to Lic g)
- g stays afloat

Dittongo mobile \& g

- 1SG.IND.PRS: $\sqrt{ }+$ floating $o_{1 \mathrm{SG}}$

g

Dittongo mobile \& g

\checkmark 1SG.IND.PRS: $\sqrt{ }+$ floating $o_{1 \mathrm{SG}} \Leftrightarrow{ }^{*}$ ['tzno]

- Stress assignment \Rightarrow 'CV insertion
- o Lic g
- No \uparrow without C

Dittongo mobile \& g

- 1SG.IND.PRS: $\sqrt{ }+$ floating $o_{1 \mathrm{SG}} \Leftrightarrow *$ ['ťno]

- Stress assignment \Rightarrow 'CV insertion
- o Lic g
- No \uparrow without C
- 'CV needs to be identified

Dittongo mobile \& g

- 1SG.IND.PRS: $\sqrt{ }+$ floating $o_{1 \mathrm{SG}} \Leftrightarrow *[$ 'tje:no]

- Stress assignment \Rightarrow 'CV insertion
- o Lic g
- No \uparrow without C
- 'CV needs to be identified
- ε spreading \Rightarrow *unlinearized licensed g

Dittongo mobile \& g

- 1SG.IND.PRS: $\sqrt{ }+$ floating $o_{1 \mathrm{SG}} \Leftrightarrow *[$ 'tegno]

- Stress assignment \Rightarrow 'CV insertion
- o Lic g
- No \uparrow without C
- 'CV needs to be identified
- ε spreading \Rightarrow *unlinearized licensed g
$-g \uparrow$ in $\mathrm{C}^{\prime} \Rightarrow{ }^{*} g n$ \& ${ }^{*} g$ and o non-adjacent

Dittongo mobile \& g

- 1SG.IND.PRS: $\sqrt{ }+$ floating $o_{1 \mathrm{SG}} \Leftrightarrow$ ['ťygo]

- Stress assignment \Rightarrow 'CV insertion
- o Lic g
- No pronunciation without C
- 'CV needs to be identified
- ε spreading \Rightarrow *unlinearized licensed g
- $g \uparrow$ in $\mathrm{C}^{\prime} \Rightarrow{ }^{*} g n$ \& ${ }^{*} g$ and o non-adjacent
$-g \uparrow$ in $\mathrm{C}_{3} \& n \uparrow$ in $\mathrm{C}^{\prime} \Rightarrow g g$
- \uparrow from n-to- C_{3} to n-to- C^{\prime}

Dittongo mobile \& g

- 1SG.IND.PRS: $\sqrt{ }+$ floating $o_{1 \mathrm{SG}} \Leftrightarrow$ ['ťygo]

- V_{2} is stressed but non-branching \Rightarrow weak licensor
- ' $\mathrm{CV}_{\mathbf{i}} \mathrm{CV}_{\mathbf{i}}>{ }^{\prime} \mathrm{CVC} \varnothing>\mathbf{C V}$
- V_{2} cannot Lic $\mathrm{C}_{2} \Rightarrow$ no j-to- $\mathrm{C}_{2} \uparrow \Rightarrow$ silent j

Previous accounts - Lampitelli (2017)

- Strict CV and Elements
- DM
- One UR
- Two CV-units Root template
- Floating Root vowel and n
- j ε and wo as short vowels (one complex segment)

$$
\begin{aligned}
& \mathrm{t}|\mathrm{I} . \mathrm{A}| \mathrm{n} \\
& \mathrm{C} V \mathrm{~V} \quad \mathrm{~V}
\end{aligned}
$$

Previous accounts - Lampitelli (2017)

- Strict CV and Elements
- DM
- One UR
- Two CV-units Root template
- Floating ROOT vowel and n
- je and wo as short vowels (one complex segment)

$$
\begin{aligned}
& \mathrm{t}|\mathrm{I} . \mathrm{A}| \mathrm{n} \\
& \mathrm{C} V \mathrm{~V} \quad \mathrm{C}
\end{aligned}
$$

- g before $\mathbf{V}_{\text {[+back] }}$ (Fanciullo 1998 and Burzio 2004)
- g as fortition of $|I|_{\mathrm{TH}}$

Previous accounts - Lampitelli (2017) - 1SG

i. $o_{1 \text { SG }}$'s $|\mathrm{U}|$ 'velarizes' $\left|\left.\right|_{\mathrm{TH}}:\left|\left|\left.\right|_{\mathrm{TH}}>|\mathrm{U}|_{\mathrm{TH}}\right.\right.\right.$
ii. V_{1} is $\operatorname{PrGvtd} \Rightarrow|\mathrm{U}|_{\mathrm{TH}}$ in $\underline{C}(w)$
iii. \underline{C} is in strong position \Rightarrow fortition: $|\mathrm{U}|>\mid$ U.H.? $\mid(g)$

Previous accounts - Lampitelli (2017) - 1SG

i. $o_{1 \mathrm{SG}}$'s $|\mathrm{U}|$ 'velarizes' $\left|\left\|_{\mathrm{TH}}:\left|\| \|_{\mathrm{TH}}>|\mathrm{U}|_{\mathrm{TH}}\right.\right.\right.$
ii. V_{1} is PrGvtd $\Rightarrow|U|_{\text {TH }}$ in $\underline{C}(w)$
iii. \underline{C} is in strong position \Rightarrow fortition: $|\mathrm{U}|>|\mathrm{U} . \mathrm{H} . \mathrm{P}|(\mathrm{g})$

- Shortcomings
i. Cf. iodio, ionio, iosa ... \Rightarrow allomorphy rule: $|\||\Leftrightarrow| \mathrm{U}| /$ _Тн \circ Q Why $\mid \|_{\text {Th }}$ 'velarizes' before $|\mathrm{A}|_{\text {SB }}$?

Previous accounts - Lampitelli (2017) - 1SG

i. $o_{1 \mathrm{SG}}$'s $|\mathrm{U}|$ 'velarizes' $\left|\left\|_{\mathrm{TH}}:\left|\| \|_{\mathrm{TH}}>|\mathrm{U}|_{\mathrm{TH}}\right.\right.\right.$
ii. V_{1} is $\operatorname{PrGvtd} \Rightarrow|U|_{\text {TH }}$ in $\underline{C}(w)$
iii. \underline{C} is in strong position \Rightarrow fortition: $|\mathrm{U}|>|\mathrm{U} . \mathrm{H} . \mathrm{P}|(\mathrm{g})$

1sg	A.U	
Th	$\mathrm{I}>\mathrm{U}$	velarization __/ U
	$\mathrm{U}>\mathrm{w}>\mathrm{g}$	strong position
Root	$\mathrm{t} \varepsilon \mathrm{n}$	
Template	$\mathrm{CV}\left[\mathrm{CV}_{1}\right] \mathrm{C} \mathrm{~V}_{2}$	téngo

- Shortcomings
i. Cf. iodio, ionio, iosa $\ldots \Rightarrow$ allomorphy rule: $|\||\Leftrightarrow| \mathrm{U}| /$ тн $о$ Q Why $\mid \|_{\text {Tн }}$ 'velarizes' before $|\mathrm{A}|_{\text {SB }}$?
ii. $\left|\left\|_{\mathrm{TH}} \prec|\mathrm{A} . U|_{\text {ISG }} \Rightarrow \mid\right\|_{\mathrm{TH}}\right.$ in V_{2}

Previous accounts - Lampitelli (2017) - 1SG

i. $o_{1 \text { sG' }}$'s $|\mathrm{U}|$ 'velarizes' $\left|\left\|_{\mathrm{TH}}:\left|\| \|_{\mathrm{TH}}>|\mathrm{U}|_{\mathrm{TH}}\right.\right.\right.$
ii. V_{1} is $\operatorname{PrGvtd} \Rightarrow|U|_{\text {TH }}$ in $\underline{C}(w)$
iii. \underline{C} is in strong position \Rightarrow fortition: $|\mathrm{U}|>\mid$ U.H.? $\mid(g)$

- Shortcomings
i. Cf. iodio, ionio, iosa $\ldots \Rightarrow$ allomorphy rule: $|\||\Leftrightarrow| \mathrm{U}| /$ тн $о$
Q Why $\mid \|_{\text {Tн }}$ 'velarizes' before $|\mathrm{A}|_{\text {SB }}$?
ii. $\left|\left\|_{\mathrm{TH}} \prec|\mathrm{A} . U|_{\text {ISG }} \Rightarrow \mid\right\|_{\mathrm{TH}}\right.$ in V_{2}
iii. Cf. uomo, uovo \Rightarrow allomorphy rule: $w \Leftrightarrow g / _$Тн \circ

Previous accounts - Lampitelli (2017)

- Problems with the phono part of the morphophonological analysis and with floaters linearization
- Massive use of allomorphy
- $|\boldsymbol{I}| \Leftrightarrow|\mathrm{U}| / _$Тн $о$
- $w \Leftrightarrow g /$ _Tн $^{\text {O }}$
- II class -e-re ${ }_{\mathrm{INF}}:\left|\left|\left.\right|_{\mathrm{Th}} \Leftrightarrow\right| \mathrm{I} . \mathrm{A}\right| / /_{\text {INF }}$ (but III class $-i-\mathrm{re}_{\mathrm{INF}}$)
- ...
- No account of the g-dittongo complementary distribution
- "The analysis [...] accounts for lengthening in open stressed syllables, but does not explain why some stems undergo diphthongization together with lengthening"

Table of Contents

Hypotheses

Theoretical toolkit

Analysis

Conclusions

Conclusions

- Assuming
- Strict CV \& Turbidity Theory
- Branchingness contribution to complexity calculation

Conclusions

- Assuming
- Strict CV \& Turbidity Theory
- Branchingness contribution to complexity calculation
- I showed that
i. Dittongo mobile, g-verbs and their interaction can be accounted for with
- One UR plus phonological computation
- No DM-style allomorphy rules
- No PH-conditioned lexical allomorphy

Conclusions

- Assuming
- Strict CV \& Turbidity Theory
- Branchingness contribution to complexity calculation
- I showed that
i. Dittongo mobile, g-verbs and their interaction can be accounted for with
- One UR plus phonological computation
- No DM-style allomorphy rules
- No PH-conditioned lexical allomorphy
- Extra
- Formalization of prosodic prominence contribution to complexity
- Revision of stress-as-CV standard approach

Credits

- Maria Cortiula, Michal Starke \& nanolab
- Tobias Scheer

Previous accounts - Dittongo mobile

- Synchronic phonological computation
- j ε, w \rightarrow e, o / C_ (Saltarelli 1970)
- e, o $\rightarrow \mathrm{j}$, wo / 'C_ (Sluyters 1992)

Previous accounts - Dittongo mobile

- Synchronic phonological computation
- je, wo \rightarrow e, o / C_ (Saltarelli 1970)
- e, o $\rightarrow \mathrm{j} \varepsilon$, wo / 'C_ (Sluyters 1992)
- Lack of productivity
- Many e/o and j $\varepsilon /$ wo not affected by the rules above
- 6 verbs

Previous accounts - Dittongo mobile

- Synchronic phonological computation
- je, wo $\rightarrow e$, o / C_ (Saltarelli 1970)
- e, o $\rightarrow \mathrm{j}$, wo / 'C_ (Sluyters 1992)
- Lack of productivity
- Many e/o and j $\varepsilon /$ wo not affected by the rules above
- 6 verbs
- Lexical allomorphy (Booij \& van der Veer 2015)
- "[Dittongo mobile] is not a phenomenon triggered by active phonological processes but an instance of mixed phonological and morphological allomorphy"

Previous accounts - Dittongo mobile

- Synchronic phonological computation
- je, wo $\rightarrow e$, o / C_ (Saltarelli 1970)
- e, o $\rightarrow \mathrm{j} \varepsilon$, wo / 'C_ (Sluyters 1992)
- Lack of productivity
- Many e/o and je/wo not affected by the rules above
- 6 verbs
- Lexical allomorphy (Booij \& van der Veer 2015)
- "[Dittongo mobile] is not a phenomenon triggered by active phonological processes but an instance of mixed phonological and morphological allomorphy"
- "In multi-input theories [...] the underlying allomorphs are arbitrary, but their distribution is governed by a language-specific ranking of universal constraints"

Previous accounts - Dittongo mobile

- Synchronic phonological computation
- je, wo $\rightarrow e$, o / C_ (Saltarelli 1970)
- e, o $\rightarrow \mathrm{j} \varepsilon$, wo / 'C_ (Sluyters 1992)
- Lack of productivity
- Many e/o and j $\varepsilon /$ wo not affected by the rules above
- 6 verbs
- Lexical allomorphy (Booij \& van der Veer 2015)
- "[Dittongo mobile] is not a phenomenon triggered by active phonological processes but an instance of mixed phonological and morphological allomorphy"
- "In multi-input theories [...] the underlying allomorphs are arbitrary, but their distribution is governed by a language-specific ranking of universal constraints"
- "Mono-input approaches [...] suffer from overapplication effects [and] rely on arbitrary and language-specific rules"

Previous accounts - g-verbs

- Lack of productivity
- Many C-o sequences not affected by g-insertion
- 9 verbs

Previous accounts - g-verbs

- Lack of productivity
- Many C-o sequences not affected by g-insertion
- 9 verbs
- Lexical allomorphy
- Morphomic paradigmatic pressure (Maiden 2001)
- See also Rohlfs (1968) and Pirelli \& Battista (2000)

Previous accounts - Lampitelli (2017)

- Strict CV and DM
- One UR
- Two CV-units Root template
- Floating ROOT vowel and n
- je and wo as short vowels (one complex segment)

$$
\begin{aligned}
& \mathrm{t}|\mathrm{I} . \mathrm{A}| \mathrm{n} \\
& \mathrm{C} V \mathrm{~V} \text { C } \mathrm{V}
\end{aligned}
$$

Previous accounts - Lampitelli (2017)

- Strict CV and DM
- One UR
- Two CV-units Root template
- Floating ROOT vowel and n
- je and wo as short vowels (one complex segment)

$$
\begin{aligned}
& \mathrm{t}|\mathrm{I} . \mathrm{A}| \mathrm{n} \\
& \mathrm{C} V \mathrm{~V} \quad \mathrm{~V}
\end{aligned}
$$

- Diphthong and g iif stress on the ROOT $\mathrm{V} \Rightarrow$ extra CV slot
- g before $\mathrm{V}_{[+ \text {back] }}$ (Fanciullo 1998 and Burzio 2004)
- g as fortition of $|I|_{\mathrm{TH}}$

Previous accounts - Lampitelli (2017)

- Analysis - 1SG
i. $o_{1 \mathrm{SG}}$'s $|\mathrm{U}|$ 'velarizes' $\left|\left\|_{\mathrm{TH}}:\left|\left|\|_{\mathrm{TH}}>|\mathrm{U}|_{\mathrm{TH}}\right.\right.\right.\right.$
ii. V_{1} is $\operatorname{PrGvtd} \Rightarrow|U|_{\mathrm{TH}}$ in $\underline{C}(w)$
iii. \underline{C} is in strong position \Rightarrow fortition: $|\mathrm{U}|>\mid$ U.H.? $\mid(g)$

1sg	A.U	
Th	$\mathrm{I}>\mathrm{U}$	velarization _._ U
	$\mathrm{U}>\mathrm{w}>\mathrm{g}$	strong position
Root	$\mathrm{t} \varepsilon \mathrm{n}$	
Template	$\mathrm{C} \mathrm{~V}\left[\mathrm{CV}_{1}\right] \underline{\mathrm{C}} \mathrm{~V}_{2}$	téngo

Previous accounts - Lampitelli (2017)

- Analysis - 1SG
i. $o_{1 \mathrm{SG}}$'s $|\mathrm{U}|$ 'velarizes' $\left|\left\|_{\mathrm{TH}}:\left|\|_{\mathrm{TH}}>|\mathrm{U}|_{\mathrm{TH}}\right.\right.\right.$
ii. V_{1} is $\operatorname{PrGvtd} \Rightarrow|\mathrm{U}|_{\mathrm{TH}}$ in $\underline{C}(w)$
iii. \underline{C} is in strong position \Rightarrow fortition: $|\mathrm{U}|>\mid$ U.H.? $\mid(g)$

- Shortcomings with the phono part of the analysis
i. Cf. iodio, ionio, iosa ... \Rightarrow allomorphy rule: $|\||\Leftrightarrow| \mathrm{U}| /$ _Тн $о$

Q Why $|I|_{\text {Tн }}$ 'velarizes' before $|\mathrm{A}|_{\text {SBJ }}$?

Previous accounts - Lampitelli (2017)

- Analysis - 1SG
i. $o_{1 \mathrm{SG}}$'s $|\mathrm{U}|$ 'velarizes' $\left|\left\|_{\mathrm{TH}}:\left|\|_{\mathrm{TH}}>|\mathrm{U}|_{\mathrm{TH}}\right.\right.\right.$
ii. V_{1} is $\operatorname{PrGvtd} \Rightarrow|U|_{\mathrm{TH}}$ in $\underline{C}(w)$
iii. \underline{C} is in strong position \Rightarrow fortition: $|\mathrm{U}|>\mid$ U.H.? $\mid(g)$

- Shortcomings with the phono part of the analysis
i. Cf. iodio, ionio, iosa ... \Rightarrow allomorphy rule: $|\||\Leftrightarrow| \mathrm{U}| /$ _тн о

Q Why $\mid \|_{\text {TH }}$ 'velarizes' before $|\mathrm{A}|_{\text {SBI }}$?
ii. $\left|\left\|_{\mathrm{TH}} \prec|\mathrm{A} . U|_{\text {isG }} \Rightarrow \mid\right\|_{\mathrm{TH}}\right.$ in V_{2}

NB [CV] after $\mid \|_{\text {тн }}$ insertion

Previous accounts - Lampitelli (2017)

- Analysis - 1SG
i. $o_{1 \mathrm{SG}}$'s $|\mathrm{U}|$ 'velarizes' $|\mathrm{I}|_{\mathrm{TH}}:|I|_{\mathrm{TH}}>|\mathrm{U}|_{\mathrm{TH}}$
ii. V_{1} is $\operatorname{PrGvtd} \Rightarrow|\mathrm{U}|_{\mathrm{TH}}$ in $\underline{C}(w)$
iii. \underline{C} is in strong position \Rightarrow fortition: $|\mathrm{U}|>\mid$ U.H.? $\mid(g)$

- Shortcomings with the phono part of the analysis
i. Cf. iodio, ionio, iosa ... \Rightarrow allomorphy rule: $|\||\Leftrightarrow| \mathrm{U}| /$ _тн о

Q Why $|I|_{\text {Tн }}$ 'velarizes' before $|\mathrm{A}|_{\text {SBJ }}$?
ii. $\left|I_{T H} \prec\right| A .\left.U\right|_{\text {ISG }} \Rightarrow|I|_{\text {TH }}$ in V_{2}

NB [CV] after $\mid \|_{\text {тн }}$ insertion
iii. Cf. uomo, uovo \Rightarrow allomorphy rule: $w \Leftrightarrow g / _$Тн $о$

Previous accounts - Lampitelli (2017)

- Analysis-2,3sG
i. $i_{2 \mathrm{SG}}$'s $\mid \|$ does not 'velarize' $\left|\left|\left.\right|_{\mathrm{TH}}\right.\right.$
ii. V_{1} is $\operatorname{PrGvtd} \Rightarrow j \varepsilon$ lengthens
iii. n in $\underline{C} \Rightarrow \mid \|_{\text {Тн }}$ afloat

2sg	i	
Th	I	no harmony
Root	j ε	
Template	$\mathrm{CV}\left[\mathrm{CV}_{1}\right] \underline{\mathrm{C}} \mathrm{V}_{2}$	tiéni

Previous accounts - Lampitelli (2017)

- Analysis - 2,3sG
i. $i_{2 \mathrm{SG}}$'s $\left||\mid\right.$ does not 'velarize' $| \|_{\text {TH }}$
ii. V_{1} is $\operatorname{PrGvtd} \Rightarrow j \varepsilon$ lengthens
iii. n in $\underline{C} \Rightarrow \mid \|_{\text {тн }}$ afloat

2sg	i	
Th	I	no harmony
Root	$\mathrm{t} j \mathrm{~m} \quad \mathrm{n}$	
Template	$\mathrm{CV}\left[\mathrm{CV}_{1}\right] \underline{\mathrm{C}} \mathrm{V}_{2}$	tiéni

- Shortcomings with with the phono part of the analysis
ii. Why $j \varepsilon$, and why ε to V_{1} ?

Previous accounts - Lampitelli (2017)

- Analysis - 2,3sG
i. $i_{2 \mathrm{SG}}$'s $||\mid \text { does not 'velarize' }||_{\text {TH }}$
ii. V_{1} is $\operatorname{PrGvtd} \Rightarrow j \varepsilon$ lengthens
iii. n in $\underline{C} \Rightarrow \mid \|_{\text {тн }}$ afloat

2sg	i	
Th	I	no harmony
Root	n	
Template	$\mathrm{CV}\left[\mathrm{CV}_{1}\right] \underline{\mathrm{C}} \mathrm{V}_{2}$	tiéni

- Shortcomings with with the phono part of the analysis
ii. Why $j \varepsilon$, and why ε to V_{1} ?
iii. Why n to \underline{C} ?

NB i. n is a floater, ii. in $1 \mathrm{SG}, \varepsilon$ does not lengthen, and n in 'C

Previous accounts - Lampitelli (2017)

- Analysis - 2,3sG
i. $i_{2 \mathrm{SG}}$'s $||\mid \text { does not 'velarize' }||_{\text {TH }}$
ii. V_{1} is $\operatorname{PrGvtd} \Rightarrow j \varepsilon$ lengthens
iii. n in $\underline{C} \Rightarrow \mid \|_{\text {Тн }}$ afloat

2sg	i	
Th	I	no harmony
Root	$\mathrm{t} j \mathrm{~m} \quad \mathrm{n}$	
Template	$\mathrm{CV}\left[\mathrm{CV}_{1}\right] \underline{\mathrm{C}} \mathrm{V}_{2}$	tiéni

- Shortcomings with with the phono part of the analysis
ii. Why $j \varepsilon$, and why ε to V_{1} ?
iii. Why n to \underline{C} ?

NB i. n is a floater, ii. in 1SG, ε does not lengthen, and n in 'C
iii. $|I|_{\mathrm{TH}} \prec\left|\left\|_{2 \mathrm{SG}} \Rightarrow \mid\right\|_{\mathrm{TH}}\right.$ in V_{2}

Previous accounts - Lampitelli (2017)

- Problems with the phono part of the morphophonological analysis and with floaters linearization
- Massive use of allomorphy
- $|\boldsymbol{I}| \Leftrightarrow|\mathrm{U}| / _$Тн $о$
- $w \Leftrightarrow g /$ _Tн $^{\text {O }}$

- No formal account of the g-dittongo complementary distribution
- "The analysis [...] accounts for lengthening in open stressed syllables, but does not explain why some stems undergo diphthongization together with lengthening"

$1 \mathrm{SG} \& 2 \mathrm{SG}$ vs 3 SG

- 1SG.IND.PRS: ['tعngo], ['a:mo] \Rightarrow...CVC $_{\sqrt{ }}$ - \mathbf{o}
- 1SG.IND.PRS phonological exponent: floating o
- o docks onto the $\sqrt{ }$-final V_{\varnothing}
- No Th (unless G $<|\boldsymbol{\|}|$ as per Lampitelli 2017)

$1 \mathrm{SG} \& 2 \mathrm{SG}$ vs 3 SG

- 1SG.IND.PRS: ['ťygo], ['a:mo] \Rightarrow... $^{\text {CVC }}{ }_{\sqrt{ }}$ o
- 1SG.IND.PRS phonological exponent: floating o
- o docks onto the $\sqrt{ }$-final V_{\varnothing}
- No Th (unless G < |l| as per Lampitelli 2017)
- 2SG.IND.PRS: ['tje:ni], ['a:mi] \Rightarrow...CVC ${ }_{\sqrt{ }-\mathbf{i}}$
- 2SG.IND.PRS phonological exponent: floating i
- i docks onto the $\sqrt{ }$-final V_{\varnothing}
- No Th

$1 \mathrm{SG} \& 2 \mathrm{SG}$ vs 3 SG

- 1SG.IND.PRS: ['ťygo], ['a:mo] \Rightarrow...CVC ${ }_{\sqrt{ }-\mathbf{o}}$
- 1SG.IND.PRS phonological exponent: floating o
- o docks onto the $\sqrt{ }$-final V_{\varnothing}
- No Th (unless G < |l| as per Lampitelli 2017)
- 2SG.IND.PRS: ['tje:ni], ['a:mi] \Rightarrow...CVC ${ }_{\sqrt{ }-\mathbf{i}}$
- 2SG.IND.PRS phonological exponent: floating i
- i docks onto the $\sqrt{ }$-final V_{\varnothing}
- No Th
- 3SG.IND.PRS: ['tje:ne], ['a:ma] \Rightarrow...CVC ${ }_{\sqrt{ }} \mathbf{e} / \mathbf{a}$
- 3SG.IND.PRS phonological exponent
- Class II, III: floating e
- Class I: floating a

$1 \mathrm{SG} \& 2 \mathrm{SG}$ vs 3 SG

- 1SG.IND.PRS phonological exponent: floating o
- o docks onto the $\sqrt{ }$-final V_{\varnothing}
- No Th (unless G < |l| as per Lampitelli 2017)
- 2SG.IND.PRS: ['tje:ni], ['a:mi] \Rightarrow...CVC ${ }_{\sqrt{ }-\mathbf{i}}$
- 2SG.IND.PRS phonological exponent: floating i
$-i$ docks onto the $\sqrt{ }$-final \vee_{\varnothing}
- No Th
- 3SG.IND.PRS: ['tje:ne], ['a:ma] \Rightarrow...CVC ${ }_{\sqrt{ }} \mathbf{e} / \mathbf{a}$
- 3SG.IND.PRS phonological exponent
- Class II, III: floating e
- Class I: floating a
- Class-sensitive allomorphy?

1SG \& 2SG vs 3SG - a nanosyntax proposal

- 3SG.IND.PRS: ['tje:ne], ['a:ma] $\Rightarrow \ldots^{\text {...CVC }}{ }_{\sqrt{ }} \mathbf{e} / \mathbf{a}$
- Th vowels
- Class III $=|\mathrm{I}|$ (tenere)
- Class II = |A.I| (venire)
- Class I $=|\mathrm{A}|$ (amare)
- 3SG.IND.PRS phonological exponent: $|\mathrm{A}|$

1SG \& 2SG vs 3SG - a nanosyntax proposal

- 3SG.IND.PRS: ['tje:ne], ['a:ma] $\Rightarrow \ldots^{\text {...CVC }}{ }_{\sqrt{ }} \mathbf{e} / \mathbf{a}$
- Th vowels
- Class III $=|\mathrm{I}|$ (tenere)
- Class II =|A.I| (venire)
- Class I $=|\mathrm{A}|$ (amare)
- 3SG.IND.PRS phonological exponent: $|\mathrm{A}|$
\checkmark Th \& $|\mathrm{A}|_{3 \text { 3SG.Ind.PRS }}$ merge in $\sqrt{ }$-final V_{\varnothing}
- Class III $=|I|+|A| \Rightarrow$ ['vje:ne]
- Class II $=|\mathrm{A} . \mathrm{I}|+|\mathrm{A}| \Rightarrow$ ['tje:ne]
- Class I $=|\mathrm{A}|+|\mathrm{A}| \Rightarrow$ ['a:ma]

1SG \& 2SG vs 3SG - a nanosyntax proposal

- 3SG.IND.PRS: ['tje:ne], ['a:ma] \Rightarrow...CVC ${ }_{\sqrt{ }} \mathbf{e} / \mathbf{a}$
- Th vowels
- Class III $=|\mathrm{I}|$ (tenere)
- Class II = |A.I| (venire)
- Class I $=|\mathrm{A}|$ (amare)
- 3SG.IND.PRS phonological exponent: $|\mathrm{A}|$
$-\mathrm{TH} \&|\mathrm{~A}|_{3 \text { 3g.Ind.PRS }}$ merge in $\sqrt{ }$-final V_{\varnothing}
- Class III $=|I|+|A| \Rightarrow$ ['vje:ne]
- Class II $=|\mathrm{A} . \mathrm{I}|+|\mathrm{A}| \Rightarrow$ ['tje:ne]
- Class I $=|\mathrm{A}|+|\mathrm{A}| \Rightarrow$ ['a:ma]
- Why does Th surface only in 3SG.IND.PRS?

1SG \& 2SG vs 3SG - a nanosyntax proposal

- 3SG.IND.PRS: ['tje:ne], ['a:ma] \Rightarrow...CVC ${ }_{\sqrt{ }} \mathbf{e} / \mathbf{a}$
- Th vowels
- Class III $=|\mathrm{I}|$ (tenere)
- Class II = |A.I| (venire)
- Class I $=|\mathrm{A}|$ (amare)
- 3SG.IND.PRS phonological exponent: $|\mathrm{A}|$
$-\mathrm{TH} \&|\mathrm{~A}|_{3 \text { SG.IND.PRS }}$ merge in $\sqrt{ }$-final V_{\varnothing}
- Class III $=|I|+|A| \Rightarrow$ ['vje:ne]
- Class II $=|\mathrm{A} . \mathrm{I}|+|\mathrm{A}| \Rightarrow$ ['tje:ne]
- Class I $=|\mathrm{A}|+|\mathrm{A}| \Rightarrow$ ['a:ma]
- Why does Th surface only in 3SG.IND.PRS?
- 3SG.IND.PRS is 'smaller' than 1,2SG.IND.PRS
- floating $0 \Leftrightarrow$ Root-Th-1SG.IND.PRS
\checkmark floating $i \Leftrightarrow$ Root-Th-2SG.IND.PRS
- floating $a \Leftrightarrow$ Root-Th-3SG.IND.PRS

$1 \mathrm{SG} \& 2 \mathrm{SG}$ vs 3 SG - a nanosyntax proposal

- 3SG.IND.PRS: ['tje:ne], ['a:ma] \Rightarrow...CVC ${ }_{\sqrt{ }} \mathbf{e} / \mathbf{a}$
- Th vowels
- Class III $=|I|$ (tenere)
- Class II = |A.I| (venire)
- Class I $=|\mathrm{A}|$ (amare)
- 3SG.IND.PRS phonological exponent: $|\mathrm{A}|$
- Th \& $|A|_{3 \text { SG.IND.PRS }}$ merge in $\sqrt{ }$-final V_{\varnothing}
- Class III $=|I|+|A| \Rightarrow$ ['vje:ne]
- Class II $=|\mathrm{A} . \mathrm{I}|+|\mathrm{A}| \Rightarrow[$ 'tje:ne]
- Class I $=|\mathrm{A}|+|\mathrm{A}| \Rightarrow$ ['a:ma]
- Why does Th surface only in 3SG.IND.PRS?
- 3SG.IND.PRS is 'smaller' than 1,2SG.IND.PRS
- floating $0 \Leftrightarrow$ Root-Th-1SG.IND.PRS
- floating $i \Leftrightarrow$ Root-Th-2SG.InD.PRS
- floating $a \Leftrightarrow$ Root-Th-3SG.IND.PRS
$-\ln 3$ SG.IND.PRS, TH head can be lexicalized (in $\sqrt{ }$-final V_{\varnothing})

TR cluster

- $\sqrt{\text { PREG }}$ 'prey'

$$
\begin{array}{cccccc}
\mathrm{C}_{1} & V_{1} & \mathrm{C}_{2} & \mathrm{~V}_{2} & \mathrm{C}_{3} & \mathrm{~V}_{3} \\
\hat{\imath} & & \hat{\imath} & \hat{\imath} & \hat{I} & \\
\mathrm{p} & \longleftrightarrow \mathrm{r} & \varepsilon & \mathrm{~g} &
\end{array}
$$

TR cluster

- $\sqrt{\text { PREG }}$ 'prey'

$$
\begin{array}{cccccc}
\mathrm{C}_{1} & V_{1} & \mathrm{C}_{2} & \mathrm{~V}_{2} & \mathrm{C}_{3} & \mathrm{~V}_{3} \\
\hat{\imath} & & \hat{\imath} & \hat{\imath} & \hat{\imath} & \\
\mathrm{p} & & \mathrm{r} & \varepsilon & \mathrm{~g} &
\end{array}
$$

- 2PL.IND.PRS: $\sqrt{ }+$ floating $a_{\mathrm{TH}}+\mathrm{C}_{\mathrm{t}} \mathrm{V}_{\mathrm{e} 2 \mathrm{PL}} \Leftrightarrow$ [pre'ga:te]

TR cluster

- $\sqrt{\text { PREG }}$ 'prey'

$$
\begin{array}{cccccc}
\mathrm{C}_{1} & \mathrm{~V}_{1} & \mathrm{C}_{2} & \mathrm{~V}_{2} & \mathrm{C}_{3} & \mathrm{~V}_{3} \\
\stackrel{\imath}{l} & & \imath & \imath & \hat{\imath} & \\
\mathrm{p} & \longleftrightarrow \mathrm{r} & \varepsilon & \mathrm{~g} &
\end{array}
$$

- 2PL.IND.PRS: $\sqrt{ }+$ floating $a_{\mathrm{TH}}+\mathrm{C}_{\mathrm{t}} \mathrm{V}_{\mathrm{e} 2 \mathrm{PL}} \Leftrightarrow$ [pre'ga:te]

- 1SG.IND.PRS: $\sqrt{ }+$ floating $o_{1 \mathrm{SG}} \Leftrightarrow$ ['pre:go]

