Turbid strict CV
 Silent lateral actors in Arabic

Edoardo Cavirani

CRISSP
KU Leuven

Feb. 17, 2022

$$
\begin{array}{cc}
\text { 1PL } & \text { lebesna } \\
\text { 1SG } & \text { lebest } \\
\text { 3F.SG } & \text { lebset }
\end{array}
$$

Excerpt of PRF of $\sqrt{\text { LBS }}$ 'put (clothes) on' (CEA, Fathi 2013)

1PL	lebesna
1SG	lebest
3F.SG	lebset

Excerpt of PRF of $\sqrt{\text { LBS }}$ 'put (clothes) on' (CEA, Fathi 2013)

- e between C_{2} and C_{3} iif followed by CC
- 1PL: ...esn
- 1SG: ...est

1PL	lebesna
1SG	lebest
3F.SG	lebset

Excerpt of PRF of $\sqrt{\text { LBS }}$ 'put (clothes) on' (CEA, Fathi 2013)

- e between C_{2} and C_{3} iif followed by CC
- 1PL: ...esn
- 1SG: ...est
- No e if followed by a full V
- 3F.SG: ...Øset
- 1PL: lebesna

- 1sG: lebest

■ 3F.SG: lebset

- 1PL: lebesna
- $V_{4}=$ full $N, V_{4} P G s V_{3} \Rightarrow V_{3}=\emptyset$
- V_{3} is $P G e d \Rightarrow V_{3} * P G s V_{2} \Rightarrow V_{2}=e$

- 1sG: lebest
- $\mathrm{V}_{4}=\mathrm{EN}, \mathrm{V}_{4} \mathrm{PGs} \mathrm{V}_{3} \Rightarrow \mathrm{~V}_{3}=\emptyset, \mathrm{V}_{3} *$ PGs $\mathrm{V}_{2} \Rightarrow \mathrm{~V}_{2}=e$
- FEN parameter ON

- 1SG: lebest
- $\mathrm{V}_{4}=\mathrm{EN}, \mathrm{V}_{4}$ PGs $\mathrm{V}_{3} \Rightarrow \mathrm{~V}_{3}=\emptyset, \mathrm{V}_{3} *$ PGs $\mathrm{V}_{2} \Rightarrow \mathrm{~V}_{2}=e$
- FEN parameter ON

- 3F.SG: lebset
- $\mathrm{V}_{4}=E N, \mathrm{~V}_{4} * P G s \mathrm{~V}_{3} \Rightarrow \mathrm{~V}_{3}=e, \mathrm{~V}_{3}$ PGs $\mathrm{V}_{2} \Rightarrow \mathrm{~V}_{2}=\emptyset$
- FEN parameter OFF

- Problem
- FEN parameters are systemic
- They hold throughout the whole grammar
- If FEN PGs in 1sG, then it should PG in 3F.SG too
\square Questions
How to account for cases where FEN parameters do not work? - Can we get rid of FEN narameter(s)? How to make a V aterally active despite not being pronounced?
- Problem
- FEN parameters are systemic
- They hold throughout the whole grammar
- If FEN PGs in 1sG, then it should PG in 3F.SG too
- Questions
- How to account for cases where FEN parameters do not work?
- Can we get rid of FEN parameter(s)?
- How to make a N laterally active despite not being pronounced?

■ Proposal

- Silence and phonological emptiness are not the same thing
- Silence can conceal phonological complexity
- Not all (F)EN are the same/really empty

■ Proposal

- Silence and phonological emptiness are not the same thing
- Silence can conceal phonological complexity
- Not all (F)EN are the same/really empty

Upgrading strict CV with Turbidity Theory

Structure of the talk

1 Strict CV meets Turbidity Theory

2 Case study I: Stress and length in CEA

3 Case study II: CEA inflectional markers

4 Extensions

5 Conclusion

Strict CV meets Turbidity Theory

Turbidity Theory (Goldrick 2001)

- OT-born input-output Containment relation
- The input is always contained in the output

Turbidity Theory (Goldrick 2001)

- OT-born input-output Containment relation
- The input is always contained in the output
- Deletion as non-pronunciation of a UR prime
- A prime 'belonging to' a C / V is not pronounced

Turbidity Theory (Goldrick 2001)

- OT-born input-output Containment relation
- The input is always contained in the output
- Deletion as non-pronunciation of a UR prime
- A prime 'belonging to' a C/V is not pronounced
- Epenthesis as pronunciation of an extra-UR prime
- A prime 'not belonging to' the UR is pronounced on a C/V

Turbidity Theory (Goldrick 2001)

- Reverse of deletion

Turbidity Theory (Goldrick 2001)

- Reverse of deletion
- Alternating V/yer
- A prime 'belonging to' a specific C / V is pronounced on that C / V if *PGed

Turbidity Theory (Goldrick 2001)

- Reverse of deletion
- Alternating V/yer
- A prime 'belonging to' a specific C/V is pronounced on that C/V if *PGed
- Pronunciation of floating primes
- A floating prime introduced by morphosyntactic computation is pronounced on a C/V

Turbidity Theory (Goldrick 2001)

- Reverse of deletion
- Alternating V/yer
- A prime 'belonging to' a specific C / V is pronounced on that C / V if *PGed
- Pronunciation of floating primes
- A floating prime introduced by morphosyntactic computation is pronounced on a C/V

How to formalize 'belonging' and 'pronunciation'?

Turbidity Theory (Goldrick 2001)

Asymmetric relations between primes and prosodic nodes

Turbidity Theory (Goldrick 2001)

Asymmetric relations between primes and prosodic nodes

- Projection (\downarrow)
- Lexical affiliation of a prime to a C/V
- No manipulation allowed

Turbidity Theory (Goldrick 2001)

Asymmetric relations between primes and prosodic nodes

- Projection (\downarrow)
- Lexical affiliation of a prime to a C/V
- No manipulation allowed
- Pronunciation (\uparrow)
- Phonetic interpretation of a prime on a C/V
- Manipulated by phonology (addition/deletion of \uparrow)

Strict CV meets Turbidity Theory

Floating prime

	V_{1}
$\|\mathrm{~A}\|$	
\emptyset	\varnothing

eN

\emptyset

Full N
[a]

- Floating prime: V-less prime
- EN: prime-less V
- eN: prime, V, \downarrow (= yers)
- Full \mathbf{N} : prime, V, \downarrow and \uparrow

TT and the Complexity Condition

■ Hypothesis I: Complexity Condition (Harris 1990)

- "Let α and β be melodic expressions occupying positions \mathbf{A} and \mathbf{B} respectively. Then, if A governs B, β is no more complex than α "
- Lateral strength \propto representational complexity
\square Some consequences

TT and the Complexity Condition

■ Hypothesis I: Complexity Condition (Harris 1990)

- "Let α and β be melodic expressions occupying positions \mathbf{A} and \mathbf{B} respectively. Then, if \mathbf{A} governs B, β is no more complex than α "
- Lateral strength \propto representational complexity
- Hypothesis II
- Representational complexity $=$ number of representational primitives
- Representational primitives $=$ primes and relations $(\downarrow$ and $\uparrow)$

TT and the Complexity Condition

- Hypothesis I: Complexity Condition (Harris 1990)
- "Let α and β be melodic expressions occupying positions \mathbf{A} and \mathbf{B} respectively. Then, if A governs B, β is no more complex than α "
- Lateral strength \propto representational complexity
- Hypothesis II
- Representational complexity $=$ number of representational primitives
- Representational primitives $=$ primes and relations $(\downarrow$ and $\uparrow)$
- Some consequences
- eN are more complex thus laterally stronger than EN
- Some (F)EN are actually (F)eN
- Silent $\mathrm{N}(\mathrm{eN})$ can be phonologically active

Two CEA puzzles

- Distribution of stress and length (case study I)
- Vocalization of the root-final V (case study II)

Two CEA puzzles

- Distribution of stress and length (case study I)
- Vocalization of the root-final V (case study II)
- Thoroughly discussed in Fathi (2013)
- 'Informal' proposal of two silent objects
- 3M.SG.OBJ/Poss /hu:/
- 1SG.SBJ /to/
- Goal: refining Fathi (2013)'s proposal
- Explicit TT formalization

Two CEA puzzles

- Distribution of stress and length (case study I)
- Vocalization of the root-final V (case study II)
- Thoroughly discussed in Fathi (2013)
- 'Informal' proposal of two silent objects

■ 3M.SG.OBJ/POSs /hu:/

- 1SG.SBJ /tə /

■ Goal: refining Fathi (2013)'s proposal

- Explicit TT formalization

Case study I: Stress and length in CEA

Distribution of stress and length

- Stress and length both in penultimate and final position
- Length-stress correlation (when $\mathrm{V}=$ corner vowel; see below)
a. [mesek'na:]
'we caught him'
b. [mesek'narha]
'we caught her'
c. [mesekna'ha:li]
'we caught her for me'

CVCVC'CVV

CVCVC'CVVCV

CVCVCCVCVVCV

Distribution of stress and length

- Length is contrastive only in final position
$\begin{array}{ll}\text { a. } & \text { [me'sektu] } \\ \text { /mesek-tu/ } \\ \text { caught-2PL.SBJ } \\ \text { 'you caught' }\end{array}$
b. ['korsi]
/korsi/
chair.SG
'chair'

```
[mesek'tu:]
/mesek-tu-u/
caught-2PL.SBJ-3M.SG.OBJ
'you caught it'
```

[kor'si:]
/korsi-i/
chair.SG-3M.SG.POSS 'his chair'

Distribution of stress and length

- Length is contrastive only in final position

	[me'sektu]	[mesek'tu:]
	/mesek-tu/	/mesek-tu-u/
	caught-2PL.SBJ	caught-2PL.SBJ-3M.SG.OBJ
	'you caught'	'you caught it'
	['korsi]	[kor'sis]
	/korsi/	/korsi-i/
	chair.SG	chair.SG-3M.SG.POSS
	'chair'	'his chair'

- Fathi (2013) shows that 'finality' is illusory
- Concatenation of $3 \mathrm{M} . \mathrm{SG} . \mathrm{OBJ} \Rightarrow$ lengthening of the base-final vowel

Distribution of stress and length

- Length is contrastive only in final position

	[me'sektu]	[mesek'tu:]
	/mesek-tu/	/mesek-tu-u/
	caught-2PL.SBJ	caught-2PL.SBJ-3M.SG.OBJ
	'you caught'	'you caught it'
	['korsi]	[kor'sis]
	/korsi/	/korsi-i/
	chair.SG	chair.SG-3M.SG.POSS
	'chair'	'his chair'

- Fathi (2013) shows that 'finality' is illusory
- Concatenation of $3 \mathrm{M} . \mathrm{SG} . \mathrm{OBJ} \Rightarrow$ lengthening of the base-final vowel
- What is the UR of $3 \mathrm{M} . \mathrm{SG} . \mathrm{OBJ}$?

3M.SG.obJ as emtpy CV

a. [mesek'tur]
/mesek-tu-u/
caught-2PL.SBJ-3M.SG.OBJ

'you caught it'
b. [kor'si:]
/korsi-i/
chair.SG-3M.SG.POSS
$\begin{array}{cccc}\ldots & \mathrm{C}_{1} & \mathrm{~V}_{1} & \mathrm{C}_{2}, \\ & \mathrm{~V}_{2} \\ \mathrm{~S} & \mathrm{i} & ,\end{array},-$,
'his chair'
c. [mesek'na:]
/mesek-na-a/
caught-1PL.SBJ-3M.SG.OBJ

'we caught him'

3M.SG.OBJ as empty CV?

- Depending on "personal stylistic factors or contextual factors like slow speech or rhetorical emphasis" (Fathi 2013:18), these forms can be followed by [h]
- [mesek'tu:] ~ [mesek'tu:h]
- [kor'si:] ~ [kor'sish]

3M.SG.OBJ as empty CV?

- Depending on "personal stylistic factors or contextual factors like slow speech or rhetorical emphasis" (Fathi 2013:18), these forms can be followed by [h]
- [mesek'tu:] ~ [mesek'tu:h]
- [kor'si:] ~ [kor'sish]
- If these forms are followed by another suffix, [h] is followed by [u], and stress and length shift to the right (cf. [mesek'tu:])

3M.SG.OBJ as empty CV?

- Depending on "personal stylistic factors or contextual factors like slow speech or rhetorical emphasis" (Fathi 2013:18), these forms can be followed by [h]
- [mesek'tu:] ~ [mesek'tu:h]
- [kor'si:] ~ [kor'sish]
- If these forms are followed by another suffix, [h] is followed by [u], and stress and length shift to the right (cf. [mesek'tu:])

```
[mesektu'husli]
/mesek-tu-hu-l-i/
caught-2PL.SBJ-3M.SG.OBJ-for-1SG.DAT
'you caught him for me'
```


3M.SG.OBJ as empty CV?

- 3M.SG.OBJ \neq empty CV

3M.SG.OBJ as empty CV?

- 3M.SG.OBJ \neq empty CV

■ 3M.SG.OBJ $=$ CV

- $\mathrm{C}=/ \mathrm{h} /$
- $\mathrm{V}=/ \mathrm{u} /$
-/h/ and /u/ are not necessarily pronounced - /u/ is visible to the stress assigning algorithm

3M.SG.OBJ as empty CV?

- 3M.SG.OBJ \neq empty CV

■ $3 \mathrm{M} . \mathrm{sG}$. obJ $=\mathrm{CV}$

- $\mathrm{C}=/ \mathrm{h} /$
- $\mathrm{V}=/ \mathrm{u} /$
- /h/ and /u/ are not necessarily pronounced

3M.SG.OBJ as empty CV?

- 3M.SG.OBJ \neq empty CV

■ $3 \mathrm{M} . \mathrm{sG}$. obJ $=\mathrm{CV}$
■ C = /h/

- $\mathrm{V}=/ \mathrm{u} /$
- /h/ and / u / are not necessarily pronounced
- /u/ is visible to the stress assigning algorithm
- Stress to the penultimate prime associated with a V

3M.SG.OBJ as empty CV?

- 3M.sG.OBJ \neq empty CV

■ $3 \mathrm{M} . \mathrm{sG}$. obJ $=\mathrm{CV}$

- $\mathrm{C}=/ \mathrm{h} /$
- $\mathrm{V}=/ \mathrm{u} /$
- /h/ and / u / are not necessarily pronounced
- /u/ is visible to the stress assigning algorithm
- Stress to the penultimate prime associated with a V
/hu/ is phonologically active, despite being silent

Representing 3M.SG.obJ - provisional

- 3M.SG.OBJ enters the derivation with only \downarrow
- Its pronunciation (\uparrow) depends on the phonological environment

Representing 3M.sG.obJ - provisional

- 3M.SG.OBJ enters the derivation with only \downarrow
- Its pronunciation (\uparrow) depends on the phonological environment

- What about the [kor'six] and [mesek'na:]?
- How to make [ix] and [a:] compatible with /hu/3m.sc.obs?
- Where does the extra V come from if not provided by /hu/3м.sG.oвı?

Stress and length

- CEA corner vowels are phonologically long
- CEA corner vowels are phonetically long is stressed

Stress and length

- CEA corner vowels are phonologically long
- CEA corner vowels are phonetically long is stressed
- When a corner vowel "is identified as the stress bearing unit, pitch floods over its corresponding templatic chunk (that is two V slots), thus perceived 'longer' than usual" (Fathi 2013: 198)

Stress and length

- CEA corner vowels are phonologically long
- CEA corner vowels are phonetically long is stressed
- When a corner vowel "is identified as the stress bearing unit, pitch floods over its corresponding templatic chunk (that is two V slots), thus perceived 'longer' than usual" (Fathi 2013: 198)
- TT provides the right formal tools for this mismatch

Stress and length in TT

■ No stress \Rightarrow phonologically long, phonetically short

- Prime associated with both V via \downarrow, but only with one V via \uparrow

Stress and length in TT

■ No stress \Rightarrow phonologically long, phonetically short

- Prime associated with both V via \downarrow, but only with one V via \uparrow

■ Stress \Rightarrow phonologically long, phonetically long

- Stress licenses length/introduces \uparrow
- Prime associated with both \vee via \downarrow and \uparrow

Stress and length

- Vocabulary entries (UR)

1. /korsi:/ 'chair.SG'

- $\mathrm{V}_{3}, \mathrm{~V}_{4} \downarrow / \mathrm{i} / \Rightarrow$ phonologically long /i:/
- /i/ $\uparrow \mathrm{V}_{3} \Rightarrow$ phonetically short [i]

Stress and length

- Vocabulary entries (UR)

1. /korsi:/ 'chair.SG'

- $\mathrm{V}_{3}, \mathrm{~V}_{4} \downarrow / \mathrm{i} / \Rightarrow$ phonologically long /i:/
- /i/ $\uparrow \mathrm{V}_{3} \Rightarrow$ phonetically short [i]

2. /hu:/ '3M.SG.Poss'

- $\mathrm{V}_{5}, \mathrm{~V}_{6} \downarrow / \mathrm{u} / \Rightarrow$ phonologically long /u:/
- $C_{5} \downarrow / \mathrm{h} /$
- no $\uparrow \Rightarrow$ phonetically silent marker

Stress and length

- Vocabulary entries (UR)

1. /korsi:/ 'chair.SG'

- $\mathrm{V}_{3}, \mathrm{~V}_{4} \downarrow / \mathrm{i} / \Rightarrow$ phonologically long /i:/
- /i/ $\uparrow \mathrm{V}_{3} \Rightarrow$ phonetically short [i]

2. /hu:/ '3M.SG.POss'

- $\mathrm{V}_{5}, \mathrm{~V}_{6} \downarrow / \mathrm{u} / \Rightarrow$ phonologically long /u:/
- $C_{5} \downarrow / \mathrm{h} /$
- no $\uparrow \Rightarrow$ phonetically silent marker

NB /u:/ final \Rightarrow /i:/ penultimate

Stress and length

- Phonological computation
- Stress to /i/ (penultimate associated prime)

Stress and length

- Phonological computation
- Stress to /i/ (penultimate associated prime)
- /i/-to- ${ }_{4} \uparrow$ insertion (length licensing)
\square /is/ \rightarrow [it]

Stress and length

- Phonological computation
- Stress to /i/ (penultimate associated prime)
- /i/-to- ${ }_{4} \uparrow$ insertion (length licensing)
- /iz/ \rightarrow [ir]
- V_{3} PGs $\mathrm{V}_{2} \Rightarrow \mathrm{~V}_{2}=\emptyset$

Stress and length

- Phonological computation
- Stress to /i/ (penultimate associated prime)
- /i/-to- ${ }_{4} \uparrow$ insertion (length licensing)
- /is/ \rightarrow [it]
- V_{3} PGs $\mathrm{V}_{2} \Rightarrow \mathrm{~V}_{2}=\emptyset$
- /hu:/ unstressed \Rightarrow no $\uparrow \Rightarrow \emptyset$

Stress and length

- Phonological computation
- Stress to /i/ (penultimate associated prime)
- /i/-to- $\mathrm{V}_{4} \uparrow$ insertion (length licensing)
- /is/ \rightarrow [it]
- V_{3} PGs $\mathrm{V}_{2} \Rightarrow \mathrm{~V}_{2}=\emptyset$
- /hu:/ unstressed \Rightarrow no $\uparrow \Rightarrow \emptyset$
- $\mathrm{V}_{5}\left(\right.$'s $/ \mathrm{u} /$) licenses $\mathrm{V}_{4}($'s $/ \mathrm{i} /$)

Surfacing of $3 \mathrm{M} . \mathrm{SG}$.obj

■ /mesek-tu:/ 'you caught' \rightarrow [me'sektu]

$$
\begin{array}{ccccccc}
C_{1} & V_{1} & C_{2} & V_{2} & C_{3} & V_{3} & C_{4}
\end{array} V_{4} C_{5} V_{5}
$$

- $u=$ corner vowel $\Rightarrow 2$ SG.SBJ $=/ \mathrm{tu}: /$
- $\mathrm{V}_{4} \mathrm{PGs} \mathrm{V}_{3} \Rightarrow \mathrm{~V}_{3}=\emptyset$

Surfacing of 3 M.sG.obJ

■ /mesek-tu:/ 'you caught' \rightarrow [me'sektu]

$$
\begin{array}{ccccccc}
C_{1} & V_{1} & C_{2} & V_{2} & C_{3} & V_{3} & C_{4}
\end{array} \mathrm{~V}_{4} C_{5} V_{5}
$$

■ $u=$ corner vowel $\Rightarrow 2$ SG.SBJ $=/ \mathrm{tu}: /$

- $\mathrm{V}_{4} \mathrm{PGs} \mathrm{V}_{3} \Rightarrow \mathrm{~V}_{3}=\emptyset$
- Stress on /e/ in $\mathrm{V}_{2} \Rightarrow / \mathrm{u}: /$ unstressed

Surfacing of 3 M.sG.obJ

■ /mesek-tu:/ 'you caught' \rightarrow [me'sektu]

$$
\begin{array}{ccccccccc}
C_{1} & \mathrm{~V}_{1} & \mathrm{C}_{2} & \mathrm{~V}_{2} & \mathrm{C}_{3} & \mathrm{~V}_{3} & \mathrm{C}_{4} & \mathrm{~V}_{4} & \mathrm{C}_{5}
\end{array} \mathrm{~V}_{5}
$$

- $u=$ corner vowel \Rightarrow 2SG.SBJ $=/$ tu:/
- $\mathrm{V}_{4} \mathrm{PGs} \mathrm{V}_{3} \Rightarrow \mathrm{~V}_{3}=\emptyset$
- Stress on /e/ in $\mathrm{V}_{2} \Rightarrow / \mathrm{u}: /$ unstressed
- No stress on 2SG.SBJ's $/ \mathrm{u}: / \Rightarrow$ no $/ \mathrm{u} /-\mathrm{to}-\mathrm{V}_{5} \uparrow \Rightarrow / \mathrm{tu}: / \rightarrow$ [tu]

Surfacing of $3 \mathrm{M} . \mathrm{SG}$. OBJ

- /mesek-tur-hu:/ 'you caught him' \rightarrow [mesek'tu:]

- Stress on 2SG.SBJ's $/ \mathrm{u}: / \Rightarrow / \mathrm{u} /-$ to $-\mathrm{V}_{5} \uparrow$ insertion

Surfacing of $3 \mathrm{M} . \mathrm{SG}$. OBJ

- /mesek-tur-hu:/ 'you caught him' \rightarrow [mesek'tu:]

- Stress on 2SG.SBJ's /u:/ $\Rightarrow / \mathrm{u} /-$ to- $\mathrm{V}_{5} \uparrow$ insertion
- /u/-to- $\mathrm{V}_{5} \uparrow$ insertion $\Rightarrow / \mathrm{tu} / / \rightarrow$ [tu:]

Surfacing of $3 \mathrm{M} . \mathrm{SG}$. OBJ

■ /mesek-tur-hu:/ 'you caught him' \rightarrow [mesek'tu:]

- Stress on 2SG.SBJ's /u:/ $\Rightarrow / \mathrm{u} /-$ to- $\mathrm{V}_{5} \uparrow$ insertion
- /u/-to- $\mathrm{V}_{5} \uparrow$ insertion $\Rightarrow / \mathrm{tu}: / \rightarrow$ [tu:]

■ No stress on 3M.SG.OBJ's /u:/ \Rightarrow no $\uparrow \Rightarrow /$ hu:/ $\rightarrow \emptyset$

Surfacing of $3 \mathrm{M} . \mathrm{SG}$. OBJ

■ /mesek-tu:-hu:-l-iz/ 'you caught him for me' \rightarrow [mesektu'hu:li]

- Stress on 3M.SG.obJ's /u:/ \Rightarrow 个 insertion $\Rightarrow /$ hu:/ \rightarrow [hu:]

Surfacing of $3 \mathrm{M} . \mathrm{SG}$. OBJ

- /mesek-tur-hu:-l-i:/ 'you caught him for me' \rightarrow [mesektu'husli]

- Stress on 3M.SG.obj's /u:/ $\Rightarrow \uparrow$ insertion $\Rightarrow /$ hu: $/ \rightarrow$ [hu:]

■ No stress on 2 SG.SBJ's $/ \mathrm{u}: / \Rightarrow$ no $/ \mathrm{u} /-\mathrm{to}-\mathrm{V}_{5} \uparrow \Rightarrow / \mathrm{tu}: / \rightarrow$ [tu]

- V_{6} PGs V_{5} ?

Surfacing of $3 \mathrm{M} . \mathrm{SG}$. OBJ

■ /mesek-tu:-hu:-l-iz/ 'you caught him for me' \rightarrow [mesektu'hu:li]

- Stress on 3M.SG.OBJ's $/ \mathrm{u} / / \Rightarrow \uparrow$ insertion $\Rightarrow /$ hu: $/ \rightarrow$ [hu:]

■ No stress on 2 SG.SBJ's $/ \mathrm{u}: / \Rightarrow$ no $/ \mathrm{u} /-\mathrm{to}-\mathrm{V}_{5} \uparrow \Rightarrow / \mathrm{tu}: / \rightarrow$ [tu] - $\mathrm{V}_{6} \mathrm{PGs} \mathrm{V}_{5}$?

■ No stress on 1sG.DAT $/ \mathrm{i} / / \Rightarrow$ no $/ \mathrm{i} /-$ to $-\mathrm{V}_{9} \uparrow \Rightarrow / \mathrm{i} / / \rightarrow[\mathrm{i}]$

Interim conclusion

- TT allows for a neat formalization of
- Silent phonologically active objects (/hu:/3m.sg.obs)
- The distribution of stress (always penultimate)
- The correlation of stress and length in corner vowels

Case study II: CEA inflectional markers

Basic patterns and TT - provisional analysis

- 1PL: /lebs-na:/ \rightarrow [le'besna]
- $\mathrm{V}_{4}=$ full $\mathrm{N}, \mathrm{V}_{4} \mathrm{PGs} \mathrm{V}_{3} \Rightarrow \mathrm{~V}_{3}=\emptyset$
- V_{3} is $\mathrm{PGed} \Rightarrow \mathrm{V}_{3} * P G s \mathrm{~V}_{2} \Rightarrow \mathrm{~V}_{2}=[\mathrm{e}]$

Basic patterns and TT - provisional analysis

- 1SG: /lebs-t/ \rightarrow [le'best]
- $\mathrm{V}_{4}=\mathrm{EN}, \mathrm{V}_{4}$ PGs $\mathrm{V}_{3} \Rightarrow \mathrm{~V}_{3}=\emptyset, \mathrm{V}_{3} *$ PGs $\mathrm{V}_{2} \Rightarrow \mathrm{~V}_{2}=[\mathrm{e}]$ - FEN parameter ON

Basic patterns and TT - provisional analysis

- 1SG: /lebs-t/ \rightarrow [le'best]
- $\mathrm{V}_{4}=\mathrm{EN}, \mathrm{V}_{4} \mathrm{PGs} \mathrm{V}_{3} \Rightarrow \mathrm{~V}_{3}=\emptyset, \mathrm{V}_{3} * P G s \mathrm{~V}_{2} \Rightarrow \mathrm{~V}_{2}=[\mathrm{e}]$
- FEN parameter ON

- 3F.SG: /lebs-t/ \rightarrow ['lebset]
- $\mathrm{V}_{4}=E N, \mathrm{~V}_{4} * P G s \mathrm{~V}_{3} \Rightarrow \mathrm{~V}_{3}=[\mathrm{e}], \mathrm{V}_{3} P G s \mathrm{~V}_{2} \Rightarrow \mathrm{~V}_{2}=\emptyset$
- FEN parameter OFF

Basic patterns and TT - provisional analysis

- Problem
- FEN parameters are systemic
- They hold throughout the whole grammar
- If FEN PGs in 1sG, then it should PG in 3F.SG too

Basic patterns and TT - provisional analysis

- Problem
- FEN parameters are systemic
- They hold throughout the whole grammar
- If FEN PGs in 1sG, then it should PG in 3F.SG too
- Solution
- The silent final V of 1 SG and 1 F .sG are different objects

Basic patterns and TT - provisional analysis

- Problem
- FEN parameters are systemic
- They hold throughout the whole grammar
- If FEN PGs in 1sG, then it should PG in 3F.SG too
- Solution
- The silent final V of 1 SG and 1F.SG are different objects

■ 1F.sG has a FEN \Rightarrow no PG

- 1SG has a FeN \Rightarrow PG

FEN vs FeN

- 3F.sG: /lebs-t/ \rightarrow ['lebset]
- $\mathrm{V}_{4}=E N, \mathrm{~V}_{4} *$ PGs V_{3}
- FEN parameter OFF

- FEN parameter OFF, but irrelevant - Stress on [ol hecause nenultimate

FEN vs FeN

－3F．SG：／lebs－t／\rightarrow［＇lebset］
－ $\mathrm{V}_{4}=E N, \mathrm{~V}_{4} *$ PGs V_{3}
－FEN parameter OFF

$$
\begin{array}{ccccccc}
C_{1} & V_{1} & C_{2} & V_{2} & C_{3} & V_{3} & C_{4} \\
\uparrow ⿱ 龴 ⿵ ⺆ ⿻ 二 丨
\end{array}{ }_{4}
$$

－1SG：／lebs－t／\rightarrow［le＇best］
－ $\mathrm{V}_{4}=\mathrm{eN} \Rightarrow \mathrm{V}_{4}$ more complex than $\mathrm{V}_{3} \Rightarrow \mathrm{~V}_{4} \mathrm{PGs} \mathrm{V}_{3}$
－FEN parameter OFF，but irrelevant
－Stress on［e］because penultimate

FEN vs FeN

- 3G.SG marker: $\mathrm{V}=\mathrm{EN}$
- FEN parameter $\mathrm{ON} \Rightarrow \mathrm{PG}$
- FEN parameter OFF \Rightarrow *PG
- V invisible to stress algorithm

FEN vs FeN

- 3G.SG marker: $\mathrm{V}=\mathrm{EN}$
- FEN parameter $\mathrm{ON} \Rightarrow \mathrm{PG}$
- FEN parameter OFF \Rightarrow *PG
- V invisible to stress algorithm

- 1SG marker: V = eN
- FEN parameter $\mathrm{ON} \Rightarrow \mathrm{PG}$
- FEN parameter OFF \Rightarrow PG
- V visible to stress algorithm

Discarding alternatives

- 1SG /lebs-t/ \rightarrow [le'best] \Rightarrow FEN parameter ON
- 3F.SG /lebs-t/ \rightarrow ['lebset] \Rightarrow FEN parameter OFF

Discarding alternatives

- 1sG /lebs-t/ \rightarrow [le'best] \Rightarrow FEN parameter ON
- 3F.SG /lebs-t/ \rightarrow ['lebset] \Rightarrow FEN parameter OFF

What if the 3F.SG marker were different?

Discarding alternatives - I

■ 1SG /lebs-t/ \rightarrow [le'best] \Rightarrow FEN parameter ON

- 3F.sG /lebs-et/ \rightarrow ['lebset] \Rightarrow FEN parameter ON

Discarding alternatives - I

■ 1SG /lebs-t/ \rightarrow [le'best] \Rightarrow FEN parameter ON

- 3F.sG /lebs-et/ \rightarrow ['lebset] \Rightarrow FEN parameter ON

$$
\begin{array}{ccc}
C_{1} & V_{1} & C_{2} \\
& V_{2} \\
& \imath & \downarrow \\
& \mathrm{e} & \mathrm{t}
\end{array}
$$

- $\mathrm{V}_{1}=$ full $\mathrm{N} \Rightarrow \mathrm{V}_{2} * P G s \mathrm{~V}_{1} \Rightarrow$ no problems with FEN parameter ON

Discarding alternatives - I

■ 3F.SG /lebs-et/

- V_{4} PGs $\mathrm{V}_{3} \Rightarrow \mathrm{~V}_{3} *$ PGs V_{2}
- /lebs-et/ \rightarrow *[le'beset]
- Possible way-out (?): removal of $\mathrm{V}_{3}-\mathrm{C}_{4}$ (Gussmann \& Kaye 1993)

Discarding alternatives - II

- 3F.SG /lebs- ${ }^{\text {et }}$ /
- /e/ as floating prime

$$
\begin{array}{r}
\\
\\
\\
\mathrm{e} \\
\mathrm{C} \\
\mathrm{l} \\
\mathrm{l} \\
\mathrm{t}
\end{array}
$$

Discarding alternatives - II

- 3F.SG /lebs- ${ }^{\text {e }} \mathbf{t} / \&$ FEN parameter ON
- V_{4} PGs $\mathrm{V}_{3} \Rightarrow$ no floating prime integration $\Rightarrow \mathrm{V}_{3} *$ PGs V_{2}
- /lebs- ${ }^{\mathrm{t}} \mathrm{t} / \rightarrow$ *['lebest]

Discarding alternatives - II

- 3F.sG /lebs- ${ }^{\text {e }}$ / \& FEN parameter OFF
- $\mathrm{V}_{4} *$ PGs $\mathrm{V}_{3} \Rightarrow$ floating prime integration $\Rightarrow \mathrm{V}_{3}$ PGs V_{2}
- /lebs- ${ }^{\mathrm{e}} \mathrm{t} / \rightarrow$ ['lebset]

$$
\begin{array}{cccccc}
C_{1} & V_{1} & C_{2} & V_{2} & C_{3} & V_{3} \\
C_{4} & V_{4} \\
\hat{\imath} & \hat{\imath} & \hat{\imath} & \imath & \uparrow & \hat{\imath} \\
l & \mathrm{e} & \mathrm{~b} & \mathrm{~s} & \mathrm{e} & \mathrm{t}
\end{array}
$$

Discarding alternatives - II

- 3F.SG /lebs- ${ }^{\text {e }}$ / \& FEN parameter OFF
- $\mathrm{V}_{4} *$ PGs $\mathrm{V}_{3} \Rightarrow$ floating prime integration $\Rightarrow \mathrm{V}_{3}$ PGs V_{2}
- /lebs- ${ }^{\mathrm{e}} \mathrm{t} / \rightarrow$ ['lebset]

$$
\begin{array}{cccccc}
C_{1} & V_{1} & C_{2} & V_{2} & C_{3} & V_{3} \\
C_{4} & V_{4} \\
\hat{\imath} & \uparrow & \imath & \uparrow & \uparrow & \uparrow \\
l & \mathrm{e} & \mathrm{~b} & \mathrm{~s} & \mathrm{e} & \mathrm{t}
\end{array}
$$

- This works if FEN parameter is OFF and 1sG has a FeN (Fathi 2013)

Interim conclusion

- TT allows for a neat formalization of
- Silent phonologically active objects (the FeN of $1 \mathrm{sG} / \mathrm{t} /$)
- The behaviour of final CC clusters not compatible with FEN parameters

Extensions

On yers

- Formally unclear status

1. (F)EN can apparently distinguish EN from yers

- FEN "can only govern nuclei that do not possess any floating melody in the lexicon" (Scheer 2004: 644)

On yers

- Formally unclear status

1. (F)EN can apparently distinguish EN from yers

■ FEN "can only govern nuclei that do not possess any floating melody in the lexicon" (Scheer 2004: 644)
2. Yers $=\mathrm{V}+$ floating primes

On yers

- Formally unclear status

1. (F)EN can apparently distinguish EN from yers

■ FEN "can only govern nuclei that do not possess any floating melody in the lexicon" (Scheer 2004: 644)
2. Yers $=\mathrm{V}+$ floating primes
3. If primes are floating \Rightarrow no association with V

On yers

- Formally unclear status

1. (F)EN can apparently distinguish EN from yers

- FEN "can only govern nuclei that do not possess any floating melody in the lexicon" (Scheer 2004: 644)

2. Yers $=\mathrm{V}+$ floating primes
3. If primes are floating \Rightarrow no association with V
4. If V is not associated with any prime $\Rightarrow \mathrm{V}$ is empty

On yers

- Formally unclear status

1. (F)EN can apparently distinguish EN from yers

- FEN "can only govern nuclei that do not possess any floating melody in the lexicon" (Scheer 2004: 644)

2. Yers $=\mathrm{V}+$ floating primes
3. If primes are floating \Rightarrow no association with V
4. If V is not associated with any prime $\Rightarrow \mathrm{V}$ is empty
5. (F)EN should not distinguish yers from EN

On yers

- Unconstrained landing site of floating primes
- If primes for $\mathrm{V}=$ primes for C (Element Theory), and - If yer's V is PGed

On yers

- Unconstrained landing site of floating primes
- If primes for $\mathrm{V}=$ primes for C (Element Theory), and
- If yer's V is PGed
- Floating primes of yers could associate with neighbouring C
- Possibly unattested alternations: tf_CV ~ kiC_

On yers

- Unconstrained landing site of floating primes
- If primes for $\mathrm{V}=$ primes for C (Element Theory), and
- If yer's V is PGed
- Floating primes of yers could associate with neighbouring C
- Possibly unattested alternations: tf_CV ~ kiC_
- Floating primes of yers 'prefer' to associate with 'their' V

On yers

- Unconstrained landing site of floating primes
- If primes for $\mathrm{V}=$ primes for C (Element Theory), and
- If yer's V is PGed
- Floating primes of yers could associate with neighbouring C
- Possibly unattested alternations: tf_CV ~ kiC_
- Floating primes of yers 'prefer' to associate with 'their' V
- How to define 'ownership'? (see above)

On yers

- No problem if yers $=\mathrm{eN}$

1. eN project a melodic prime \Rightarrow the prime is integrated in the phonological string

On yers

- No problem if yers $=\mathrm{eN}$

1. eN project a melodic prime \Rightarrow the prime is integrated in the phonological string
2. EN can 'see' the prime $\Rightarrow F E N$ can distinguish between EN and eN

On yers

- No problem if yers $=\mathrm{eN}$

1. eN project a melodic prime \Rightarrow the prime is integrated in the phonological string
2. EN can 'see' the prime $\Rightarrow F E N$ can distinguish between EN and eN
3. The melodic prime of a eN is pronounced on the prosodic node from which it is projected

- Unless forced to be pronounced elsewhere (CA transfer; Bohas \& Lowenstamm 2021, Cavirani 2022)

On magic licensing/syllabic consonants

- Getting rid of magic licensing (sTRV)
- /s/ fills in/spreads to the EN occurring between /s/ and C (Carvalho 2017; Prince \& Ferré 2020; Scheer \& Segeral 2020)

- Syllabicity of C

■ "Potentially-syllabic consonants /I,n/ must always be associated to a V-slot" (Faust 2022)

On magic licensing/syllabic consonants

- Orthodox use
- Representing length
- $\mathrm{C}:=$ melodic prime associated to 2 C
- V := melodic prime associated to 2 V
- Defining the phonetic interpretation
- |A|, |I|, |U| in $\mathrm{V}=[\mathrm{a}]$, [i], [u$]$
- |A|, |||, |U| in $V=[r],[j],[w]$

On magic licensing/syllabic consonants

- Heterodox use of association relations
- /s/ surfaces as $[\mathrm{s}] \Rightarrow$ neither long nor syllabic

On magic licensing/syllabic consonants

- Heterodox use of association relations
- /s/ surfaces as $[\mathrm{s}] \Rightarrow$ neither long nor syllabic

■ / n / surfaces as $[\mathrm{n}] \Rightarrow$ neither long nor consonantal

On magic licensing/syllabic consonants

- A coherent doxa
- /s/ is projected by C_{2} and $\mathrm{V}_{2} \Rightarrow / \mathrm{s} /$ 'is' both a C and a V
- /s/ is pronounced only in $C_{2} \Rightarrow / \mathrm{s} /$ surfaces as [s]

$$
\begin{aligned}
& C_{1} V_{1} C_{2} V_{2} C_{3} V_{3} C_{4} V_{4} \\
& \begin{array}{llll}
\imath \\
\mathrm{I} & \mathrm{~T} & \stackrel{\imath}{\mathrm{I}} & \hat{I} \\
\mathrm{R} & \mathrm{~A}
\end{array}
\end{aligned}
$$

On magic licensing/syllabic consonants

- A coherent doxa
- /s/ is projected by C_{2} and $V_{2} \Rightarrow / \mathrm{s} /$ 'is' both a C and a V
- /s/ is pronounced only in $C_{2} \Rightarrow / \mathrm{s} /$ surfaces as [s]

$$
\left.\begin{array}{ccccc}
C_{1} & V_{1} & C_{2} & V_{2} & C_{3} \\
& V_{3} & C_{4} & V_{4} \\
& I \downarrow & \hat{I} & & \hat{I}
\end{array}\right)
$$

- $/ \mathrm{n} /$ is projected by C_{3} and $\mathrm{V}_{2} \Rightarrow / \mathrm{n} /$ 'is' both a C and a V
- /s/ is pronounced only in $V_{2} \Rightarrow / n$ surfaces as [n]

Conclusion

Why upgrading strict CV with TT is a good idea

- Specific

Why upgrading strict CV with TT is a good idea

- Specific
- Phonological activity of silent objects (/hu:/3м.sG.овл, /t/1sc's FeN)

Why upgrading strict CV with TT is a good idea

- Specific
- Phonological activity of silent objects (/hu:/3м.sG.овл, /t/1sc's FeN)
- Regularization of the distribution of stress (always penultimate)

Why upgrading strict CV with TT is a good idea

- Specific
- Phonological activity of silent objects (/hu:/3m.sG. obJ, /t/ 1 sc's FeN)
- Regularization of the distribution of stress (always penultimate)
- Formalization of the correlation of stress and length in corner vowels

Why upgrading strict CV with TT is a good idea

- Specific

■ Phonological activity of silent objects (/hu:/3м.sG.obs, /t/1sc's FeN)

- Regularization of the distribution of stress (always penultimate)
- Formalization of the correlation of stress and length in corner vowels
- Regularization of the behaviour of final CC clusters not compatible with FEN parameters

Why upgrading strict CV with TT is a good idea

- Specific
- Phonological activity of silent objects (/hu:/3м.sG.овл, /t/1sc's FeN)
- Regularization of the distribution of stress (always penultimate)
- Formalization of the correlation of stress and length in corner vowels
- Regularization of the behaviour of final CC clusters not compatible with FEN parameters
- General

Why upgrading strict CV with TT is a good idea

- Specific
- Phonological activity of silent objects (/hu:/3m.sG.obJ, /t/ 1 sc's FeN)
- Regularization of the distribution of stress (always penultimate)
- Formalization of the correlation of stress and length in corner vowels
- Regularization of the behaviour of final CC clusters not compatible with FEN parameters
- General
- Improved formalization of yers

Why upgrading strict CV with TT is a good idea

- Specific
- Phonological activity of silent objects (/hu:/3m.sG.obJ, /t/ 1 sc's FeN)
- Regularization of the distribution of stress (always penultimate)
- Formalization of the correlation of stress and length in corner vowels
- Regularization of the behaviour of final CC clusters not compatible with FEN parameters
- General
- Improved formalization of yers
- Improved formalization of magic licensing and syllabic C configurations

Why upgrading strict CV with TT is a good idea

- Specific
- Phonological activity of silent objects (/hu:/3м.sc.obs, /t/ 1 sc's FeN)
- Regularization of the distribution of stress (always penultimate)
- Formalization of the correlation of stress and length in corner vowels
- Regularization of the behaviour of final CC clusters not compatible with FEN parameters
- General
- Improved formalization of yers
- Improved formalization of magic licensing and syllabic C configurations
- Even more general
- Direct relation between lateral actorship and representational complexity

Why upgrading strict CV with TT is a good idea

- Specific
- Phonological activity of silent objects (/hu:/3м.sc.obs, /t/ 1 sc's FeN)
- Regularization of the distribution of stress (always penultimate)
- Formalization of the correlation of stress and length in corner vowels
- Regularization of the behaviour of final CC clusters not compatible with FEN parameters
- General
- Improved formalization of yers
- Improved formalization of magic licensing and syllabic C configurations
- Even more general
- Direct relation between lateral actorship and representational complexity
- Reducing the need for FEN parameters: lateral strength encoded in the Lexicon

Why upgrading strict CV with TT is a good idea

- Specific
- Phonological activity of silent objects (/hu:/3м.sc.obs, /t/ 1 sc's FeN)
- Regularization of the distribution of stress (always penultimate)
- Formalization of the correlation of stress and length in corner vowels
- Regularization of the behaviour of final CC clusters not compatible with FEN parameters
- General
- Improved formalization of yers
- Improved formalization of magic licensing and syllabic C configurations
- Even more general
- Direct relation between lateral actorship and representational complexity
- Reducing the need for FEN parameters: lateral strength encoded in the Lexicon
- Accounting for phonological traces (not this talk, but you can ask)

