Turbid strict CV Silent lateral actors in Arabic

Edoardo Cavirani

CRISSP KU Leuven

Feb. 17, 2022

Edoardo Cavirani (CRISSP)

Turbid strict CV

1 / 53

1PLlebesna1SGlebest3F.SGlebset

Excerpt of $_{\rm PRF}$ of $\sqrt{_{\rm LBS}}$ 'put (clothes) on' (CEA, Fathi 2013)

e between C₂ and C₃ iif followed by CC

- 1PL: ...*esn*
- 1sg: ...*est*
- No e if followed by a full V
 - 3F.SG: ...Ø*set*

1PLlebesna1SGlebest3F.SGlebset

Excerpt of PRF of $\sqrt{\text{LBS}}$ 'put (clothes) on' (CEA, Fathi 2013)

• e between C_2 and $\overline{C_3}$ iif followed by CC_1

- 1PL: ...*esn*
- 1sg: ...*est*

No e if followed by a full V

■ 3F.SG: ...Ø*set*

1PLlebesna1SGlebest3F.SGlebset

Excerpt of PRF of $\sqrt{\text{LBS}}$ 'put (clothes) on' (CEA, Fathi 2013)

• e between C₂ and C₃ iif followed by CC

■ 1PL: ...*esn*

■ 1sg: ...*est*

No e if followed by a full V

■ 3F.SG: ...Ø*set*

1PL: lebesna V₄ = full N, V₄ PGs V₃ \Rightarrow V₃ = Ø V₃ is PGed \Rightarrow V₃ *PGs V₂ \Rightarrow V₂ = e

■ 1sg: *lebest*

V₄ = EN, V₄ PGs V₃ ⇒ V₃ = Ø, V₃ *PGs V₂ ⇒ V₂ = e
 FEN parameter ON

■ 3F.SG: *lebset*

■ $V_4 = EN$, $V_4 *PGs V_3 \Rightarrow V_3 = e$, $V_3 PGs V_2 \Rightarrow V_2 = \emptyset$ ■ FEN parameter OFF

■ 1sg: *lebest*

V₄ = EN, V₄ PGs V₃ ⇒ V₃ = Ø, V₃ *PGs V₂ ⇒ V₂ = e
 FEN parameter ON

■ 3F.SG: *lebset*

V₄ = EN, V₄ *PGs V₃ ⇒ V₃ = e, V₃ PGs V₂ ⇒ V₂ = Ø
 FEN parameter OFF

Problem

- **FEN** parameters are systemic
- They hold throughout the whole grammar
- \blacksquare If FEN PGs in $1 \rm SG$, then it should PG in $3 \rm F.SG$ too

Questions

- How to account for cases where FEN parameters do not work?
- Can we get rid of FEN parameter(s)?
- How to make a N laterally active despite not being pronounced?

Problem

- **FEN** parameters are systemic
- They hold throughout the whole grammar
- \blacksquare If FEN PGs in $1{\rm SG},$ then it should PG in $3{\rm F.SG}$ too

Questions

- How to account for cases where FEN parameters do not work?
- Can we get rid of FEN parameter(s)?
- How to make a N laterally active despite not being pronounced?

Proposal

- Silence and phonological emptiness are not the same thing
- Silence can conceal phonological complexity
 - Not all (F)EN are the same/really empty

Upgrading strict CV with Turbidity Theory

Proposal

Silence and phonological emptiness are not the same thing

Silence can conceal phonological complexity

■ Not all (F)EN are the same/really empty

Upgrading strict CV with Turbidity Theory

Structure of the talk

- **1** Strict CV *meets* Turbidity Theory
- 2 Case study I: Stress and length in CEA
- 3 Case study II: CEA inflectional markers
- 4 Extensions

Strict CV *meets* Turbidity Theory

Turbidity Theory (Goldrick 2001)

OT-born input-output Containment relation

- The input is always contained in the output
- Deletion as non-pronunciation of a UR prime
 - A prime 'belonging to' a C/V is not pronounced
- Epenthesis as pronunciation of an extra-UR prime
 - A prime 'not belonging to' the UR is pronounced on a C/V

Turbidity Theory (Goldrick 2001)

OT-born input-output Containment relation

 The input is always contained in the output

 Deletion as non-pronunciation of a UR prime

 A prime 'belonging to' a C/V is not pronounced

Turbidity Theory (Goldrick 2001)

OT-born input-output Containment relation

The input is always contained in the output

Deletion as non-pronunciation of a UR prime

A prime 'belonging to' a C/V is not pronounced

Epenthesis as pronunciation of an extra-UR prime

A prime 'not belonging to' the UR is pronounced on a C/V

Turbidity Theory (Goldrick 2001)

Reverse of deletion

- Alternating V/yer
 - A prime 'belonging to' a specific C/V is pronounced on that C/V if *PGed

Pronunciation of floating primes

 A floating prime introduced by morphosyntactic computation is pronounced on a C/V

Turbidity Theory (Goldrick 2001)

Reverse of deletion

- Alternating V/yer
 - A prime 'belonging to' a specific C/V is pronounced on that C/V if *PGed

Pronunciation of floating primes

 A floating prime introduced by morphosyntactic computation is pronounced on a C/V

Turbidity Theory (Goldrick 2001)

Reverse of deletion

- Alternating V/yer
 - A prime 'belonging to' a specific C/V is pronounced on that C/V if *PGed

Pronunciation of floating primes

 A floating prime introduced by morphosyntactic computation is pronounced on a C/V

Turbidity Theory (Goldrick 2001)

Reverse of deletion

- Alternating V/yer
 - A prime 'belonging to' a specific C/V is pronounced on that C/V if *PGed

Pronunciation of floating primes

 \blacksquare A floating prime introduced by morphosyntactic computation is pronounced on a C/V

Turbidity Theory (Goldrick 2001)

Asymmetric relations between primes and prosodic nodes

Projection (\downarrow)

- Lexical affiliation of a prime to a C/V
- No manipulation allowed

Pronunciation (⁺)

- Phonetic interpretation of a prime on a C/V
- Manipulated by phonology (addition/deletion of [↑])

Turbidity Theory (Goldrick 2001)

Asymmetric relations between primes and prosodic nodes

Projection (\downarrow)

- Lexical affiliation of a prime to a C/V
- No manipulation allowed

Pronunciation (↑)

- Phonetic interpretation of a prime on a C/V
- Manipulated by phonology (addition/deletion of ↑)

Turbidity Theory (Goldrick 2001)

Asymmetric relations between primes and prosodic nodes

Projection (\downarrow)

- Lexical affiliation of a prime to a C/V
- No manipulation allowed

■ Pronunciation (↑)

- Phonetic interpretation of a prime on a C/V
- Manipulated by phonology (addition/deletion of ↑)

Strict CV meets Turbidity Theory

Floating prime	EN	eN	Full N
	V_1	$V_2 \downarrow$	V ₃ ↓
A		A	A
Ø	Ø	Ø	[a]

- **Floating prime**: V-less prime
- **EN**: prime-less V
- **eN**: prime, V, \downarrow (= yers)
- **Full N**: prime, V, \downarrow and \uparrow

TT and the Complexity Condition

Hypothesis I: Complexity Condition (Harris 1990)

"Let α and β be melodic expressions occupying positions A and B respectively. Then, if A governs B, β is no more complex than α"
 Lateral strength ∝ representational complexity

Hypothesis II

- Representational complexity = number of representational primitives
- Representational primitives = primes and relations (\downarrow and \uparrow

Some consequences

- eN are more complex thus laterally stronger than EN
- Some (F)EN are actually (F)eN
- Silent N (eN) can be phonologically active

TT and the Complexity Condition

Hypothesis I: Complexity Condition (Harris 1990)

- "Let α and β be melodic expressions occupying positions A and B respectively. Then, if A governs B, β is no more complex than α "
- \blacksquare Lateral strength \propto representational complexity

Hypothesis II

- Representational complexity = number of representational primitives
- Representational primitives = primes and relations (\downarrow and \uparrow)

Some consequences

- eN are more complex thus laterally stronger than EN
- Some (F)EN are actually (F)eN
- Silent N (eN) can be phonologically active

TT and the Complexity Condition

Hypothesis I: Complexity Condition (Harris 1990)

- "Let α and β be melodic expressions occupying positions A and B respectively. Then, if A governs B, β is no more complex than α "
- \blacksquare Lateral strength \propto representational complexity
- Hypothesis II
 - Representational complexity = number of representational primitives
 - Representational primitives = primes and relations (\downarrow and \uparrow)
- Some consequences
 - eN are more complex thus laterally stronger than EN
 - Some (F)EN are actually (F)eN
 - Silent N (eN) can be phonologically active

Two CEA puzzles

- Distribution of stress and length (case study I)
- Vocalization of the root-final V (case study II)
- Thoroughly discussed in Fathi (2013)
 - 'Informal' proposal of two silent objects
 - 3M.SG.OBJ/POSS /huː/
 - 1sg.sbj /tə
- Goal: refining Fathi (2013)'s proposal
 - Explicit TT formalization

Two CEA puzzles

- Distribution of stress and length (case study I)
- Vocalization of the root-final V (case study II)
- Thoroughly discussed in Fathi (2013)
 - 'Informal' proposal of two silent objects
 - 3M.SG.OBJ/POSS /huː/
 - 1sg.sbj /tə/
- Goal: refining Fathi (2013)'s proposal
 - Explicit TT formalization

Two CEA puzzles

- Distribution of stress and length (case study I)
- Vocalization of the root-final V (case study II)
- Thoroughly discussed in Fathi (2013)
 - 'Informal' proposal of two silent objects
 - 3M.SG.OBJ/POSS /huː/
 - 1sg.sbj /tə/
- Goal: refining Fathi (2013)'s proposal
 - Explicit TT formalization

Case study I: Stress and length in CEA

Distribution of stress and length

Stress and length both in penultimate and final position
 Length-stress correlation (when V = corner vowel; see below)

- a. [mesek'na:] CVCVC'**CVV** 'we caught him'
- b. [mesek'na:ha] CVCVC'**CVV**CV 'we caught her'
- c. [mesekna'ha:li] CVCVCCV'**CVV**CV 'we caught her for me'

Distribution of stress and length

Length is contrastive only in final position

- a. [meˈsektu] /mesek-tu/ caught-2PL.SBJ 'you caught'
- b. ['korsi] /korsi/ chair.sg 'chair'

[mesek'tuː] /mesek-tu-u/ caught-2PL.SBJ-3M.SG.OBJ 'you caught it'

[kor'siː] /korsi-i/ chair.SG-3M.SG.POSS 'his chair'

Fathi (2013) shows that 'finality' is illusory
 Concatenation of 3M.SG.OBJ ⇒ lengthening of the base-final vowel
 What is the UR of 3M.SG.OBJ?

Edoardo Cavirani (CRISSP)

Turbid strict CV

Distribution of stress and length

Length is contrastive only in final position

- a. [me'sektu] [mesek'tu:] /mesek-tu/ /mesek-tu-u/ caught-2PL.SBJ caught-2PL.SBJ-3M.SG.OBJ 'you caught' 'you caught it'
- b. ['korsi] [kor'siː] /korsi/ /korsi-i/ chair.SG chair.SG-3M.SG.POSS 'chair' 'his chair'
- Fathi (2013) shows that 'finality' is illusory
 Concatenation of 3M.SG.OBJ ⇒ lengthening of the base-final vowel
 What is the UR of 3M.SG.OBJ?

Distribution of stress and length

Length is contrastive only in final position

a.	[meˈsektu]	[mesek'tuː]
	/mesek-tu/	/mesek-tu-u/
	$caught extsf{-}2 extsf{PL.SBJ}$	caught-2PL.SBJ-3M.SG.OB.
	'you caught'	'you caught it'
١.	[1]	[Leader]

- b. ['korsi] [kor'si:] /korsi/ /korsi-i/ chair.SG chair.SG-3M.SG.POSS 'chair' 'his chair'
- Fathi (2013) shows that 'finality' is illusory
 - Concatenation of $3M.SG.OBJ \Rightarrow$ lengthening of the base-final vowel
 - What is the UR of 3M.SG.OBJ?

Edoardo Cavirani (CRISSP)
$3\mathrm{M.SG.OBJ}$ as emtpy CV

- a. [mesek'tu:] /mesek-tu-u/ caught-2PL.SBJ-3M.SG.OBJ
 'you caught it'
- b. [kor'si:] /korsi-i/ chair.SG-3M.SG.POSS 'his chair'
- c. [mesek'na:] /mesek-na-a/
 caught-1PL.SBJ-3M.SG.OBJ
 'we caught him'

3M.SG.OBJ as empty CV?

- Depending on "personal stylistic factors or contextual factors like slow speech or rhetorical emphasis" (Fathi 2013:18), these forms can be followed by [h]
 - $\blacksquare \ [{\sf mesek'tu:}] \sim [{\sf mesek'tu:h}]$
 - $\ \ \, [{\rm kor'sir}] \sim [{\rm kor'sirh}]$

 If these forms are followed by another suffix, [h] is followed by [u], and stress and length shift to the right (cf. [mesek'tux])

> [mesektuˈhuːli] /mesek-tu-hu-l-i/ caught-2PL.SBJ-3M.SG.OBJ-for-1SG.DAT 'you caught him for me'

3M.SG.OBJ as empty CV?

- Depending on "personal stylistic factors or contextual factors like slow speech or rhetorical emphasis" (Fathi 2013:18), these forms can be followed by [h]
 - $\blacksquare \ [mesek'tu:] \sim [mesek'tu:h]$
 - $\ \ \, [kor'sir] \sim [kor'sirh]$

If these forms are followed by another suffix, [h] is followed by [u], and stress and length shift to the right (cf. [mesek'tu:])

> [mesektu'huːli] /mesek-tu-hu-l-i/ caught-2PL.SBJ-3M.SG.OBJ-for-1SG.DAT 'you caught him for me'

3M.SG.OBJ as empty CV?

- Depending on "personal stylistic factors or contextual factors like slow speech or rhetorical emphasis" (Fathi 2013:18), these forms can be followed by [h]
 - $\blacksquare \ [{\sf mesek'tu:}] \sim [{\sf mesek'tu:h}]$

If these forms are followed by another suffix, [h] is followed by [u], and stress and length shift to the right (cf. [mesek'tu:])

> [mesektu'hu:li] /mesek-tu-hu-l-i/ caught-2PL.SBJ-3M.SG.OBJ-for-1SG.DAT 'you caught him for me'

3M.SG.OBJ as empty CV?

• $3M.SG.OBJ \neq empty CV$

- 3м.sg.овј = CV
 - C = /h/ ■ V = /u/
- /h/ and /u/ are not necessarily pronounced
- /u/ is visible to the stress assigning algorithm
 - Stress to the penultimate prime associated with a V

3M.SG.OBJ as empty CV?

```
3M.SG.OBJ \neq empty CV
```

- 3M.SG.OBJ = CV
 - C = /h/
 V = /u/

/h/ and /u/ are not necessarily pronounced

- /u/ is visible to the stress assigning algorithm
 - Stress to the penultimate prime associated with a V

3M.SG.OBJ as empty CV?

```
    3M.SG.OBJ ≠ empty CV
    3M.SG.OBJ = CV
    C = /h/
    V = /u/
```

/h/ and /u/ are not necessarily pronounced

/u/ is visible to the stress assigning algorithm

Stress to the penultimate prime associated with a V

3M.SG.OBJ as empty CV?

```
    3M.SG.OBJ ≠ empty CV
    3M.SG.OBJ = CV_____
```

- C = /h/
 V = /u/
- /h/ and /u/ are not necessarily pronounced
- /u/ is visible to the stress assigning algorithm
 - Stress to the penultimate prime associated with a V

3M.SG.OBJ as empty CV?

```
• 3M.SG.OBJ \neq empty CV
```

- 3M.SG.OBJ = CV
 - C = /h/
 V = /u/
- /h/ and /u/ are not necessarily pronounced
- /u/ is visible to the stress assigning algorithm
 - Stress to the penultimate prime associated with a V

Representing 3M.SG.OBJ - provisional

- **3**M.SG.OBJ enters the derivation with only \downarrow
- Its pronunciation (\uparrow) depends on the phonological environment

What about the [kor'six] and [mesek'nax]?

- How to make [ir] and [ar] compatible with /hu/_{3M.SG.OBJ}?
- Where does the extra V come from if not provided by /hu/_{3M.SG.OBJ}?

Representing 3M.SG.OBJ - provisional

- 3M.SG.OBJ enters the derivation with only \downarrow
- Its pronunciation (\uparrow) depends on the phonological environment

$$egin{array}{ccc} \mathsf{C}_1 & \mathsf{V}_1 \ & \downarrow & \downarrow \ \mathrm{h} & \mathrm{u} \end{array}$$

- What about the [kor'siz] and [mesek'naz]?
 - How to make [i:] and [a:] compatible with $/hu/_{\rm 3M.SG.OBJ}$?
 - Where does the extra V come from if not provided by $/hu/_{3M.SG.OBJ}$?

• CEA corner vowels are **phonologically** long

- CEA corner vowels are phonetically long is stressed
 - When a corner vowel "is identified as the stress bearing unit, pitch floods over its corresponding templatic chunk (that is two V slots), thus perceived 'longer' than usual" (Fathi 2013: 198)
- TT provides the right formal tools for this mismatch

- CEA corner vowels are phonologically long
- CEA corner vowels are phonetically long is stressed
 - When a corner vowel "is identified as the stress bearing unit, pitch floods over its corresponding templatic chunk (that is two V slots), thus perceived 'longer' than usual" (Fathi 2013: 198)

TT provides the right formal tools for this mismatch

- CEA corner vowels are phonologically long
- CEA corner vowels are **phonetically** long is stressed
 - When a corner vowel "is identified as the stress bearing unit, pitch floods over its corresponding templatic chunk (that is two V slots), thus perceived 'longer' than usual" (Fathi 2013: 198)
- TT provides the right formal tools for this mismatch

Stress and length in TT

■ No stress ⇒ phonologically long, phonetically short

- Prime associated with both V via \downarrow , but only with one V via \uparrow
- Stress \Rightarrow phonologically long, phonetically long
 - Stress licenses length/introduces
 - \blacksquare Prime associated with both V via \downarrow and \uparrow

Stress and length in TT

■ No stress ⇒ phonologically long, phonetically short

Prime associated with both V via $\downarrow,$ but only with one V via \uparrow

■ Stress ⇒ phonologically long, phonetically long

- Stress licenses length/introduces ↑
- \blacksquare Prime associated with both V via \downarrow and \uparrow

Vocabulary entries (UR)

/korsi:/ 'chair.SG'
 V₃, V₄ ↓ /i/ ⇒ phonologically long /i:/
 /i/ ↑ V₃ ⇒ phonetically short [i]
 /hu:/ '3M.SG.POSS'
 V₅, V₆ ↓ /u/ ⇒ phonologically long /u:/
 C₅ ↓ /h/
 no ↑ ⇒ phonetically silent marker
 NB /u:/ final ⇒ /i:/ penultimate

Vocabulary entries (UR)

1. /korsi:/ 'chair.SG' $V_3, V_4 \downarrow /i/ \Rightarrow$ phonologically long /i:/ $i/ \uparrow V_3 \Rightarrow$ phonetically short [i] 2. /hu:/ '3M.SG.POSS' $V_5, V_6 \downarrow /u/ \Rightarrow$ phonologically long /u:/ $C_5 \downarrow /h/$ $no \uparrow \Rightarrow$ phonetically silent marker NB /u:/ final \Rightarrow /b/ penultimate

Vocabulary entries (UR)

Phonological computation

Stress to /i/ (penultimate associated prime)

 $/1/-to-v_4$ | insertion (length licensi

 \blacksquare /ir/ \rightarrow [ir]

•
$$V_3$$
 PGs $V_2 \Rightarrow V_2 = \emptyset$

- /huː/ unstressed \Rightarrow no $\uparrow \Rightarrow \emptyset$
- V₅('s /u/) licenses V₄('s /i/)

Phonological computation

Stress to /i/ (penultimate associated prime)

 \blacksquare /i:/ \rightarrow [i:]

•
$$V_3 \text{ PGs } V_2 \Rightarrow V_2 = \emptyset$$

• /huː/ unstressed
$$\Rightarrow$$
 no $\uparrow \Rightarrow \emptyset$

V₅('s /u/) licenses V₄('s /i/)

Phonological computation

Stress to /i/ (penultimate associated prime)
/i/-to-V₄ ↑ insertion (length licensing)
/i:/ → [i:]
V₃ PGs V₂ ⇒ V₂ = Ø
/hu:/ unstressed ⇒ no ↑ ⇒ Ø
V₅('s /u/) licenses V₄('s /i/)

Phonological computation

Stress to /i/ (penultimate associated prime)
/i/-to-V₄ ↑ insertion (length licensing)
/i:/ → [i:]
V₃ PGs V₂ ⇒ V₂ = Ø
/hu:/ unstressed ⇒ no ↑ ⇒ Ø
V₅('s /u/) licenses V₄('s /l/)

Phonological computation

Stress to /i/ (penultimate associated prime)
/i/-to-V₄ ↑ insertion (length licensing)
/i:/ → [i:]
V₃ PGs V₂ \Rightarrow V₂ = Ø
/hu:/ unstressed \Rightarrow no $\uparrow \Rightarrow \emptyset$ V₅('s /u/) licenses V₄('s /i/)

• /mesek-tu:/ 'you caught' \rightarrow [me'sektu]

• $u = \text{corner vowel} \Rightarrow 2\text{sg.sbj} = /\text{tu:}/$

• V_4 PGs $V_3 \Rightarrow V_3 = \emptyset$

• Stress on /e/ in $V_2 \Rightarrow /ux/$ unstressed

No stress on $2{
m SG.SBJ'}$ s /uː/ \Rightarrow no /u/-to-V $_5$ \uparrow \Rightarrow /tuː/ \rightarrow [tu]

■ /mesek-tuː/ 'you caught' → [meˈsektu]

- $u = \text{corner vowel} \Rightarrow 2\text{sg.sbj} = /\text{tu:}/$
- $V_4 \text{ PGs } V_3 \Rightarrow V_3 = \emptyset$
- Stress on /e/ in $V_2 \Rightarrow /u$:/ unstressed

No stress on $2{
m sG.SBJ'}$ s /uː/ \Rightarrow no /u/-to-V $_5$ \uparrow \Rightarrow /tuː/ \rightarrow [tu]

• /mesek-tu:/ 'you caught' \rightarrow [me'sektu]

- $u = \text{corner vowel} \Rightarrow 2\text{sg.sbj} = /\text{tu:}/$
- $V_4 \text{ PGs } V_3 \Rightarrow V_3 = \emptyset$
- Stress on /e/ in $V_2 \Rightarrow /ux/$ unstressed
- No stress on 2sg.sbJ's /u:/ \Rightarrow no /u/-to-V₅ $\uparrow \Rightarrow$ /tu:/ \rightarrow [tu]

■ /mesek-tuː-huː/ 'you caught him' → [mesek'tuː]

■ Stress on 2sg.sBJ's /u:/ \Rightarrow /u/-to-V₅ ↑ insertion = /u/-to-V₅ ↑ insertion \Rightarrow /tu:/ \rightarrow [tu:] ■ No stress on 3M.sg.oBJ's /u:/ \Rightarrow no $\uparrow \Rightarrow$ /hu:/ $\rightarrow \emptyset$

Edoardo Cavirani (CRISSP)

Turbid strict CV

■ /mesek-tuː-huː/ 'you caught him' → [mesek'tuː]

Stress on 2sg.sbj's /u:/ ⇒ /u/-to-V₅ ↑ insertion
 /u/-to-V₅ ↑ insertion ⇒ /tu:/ → [tu:]
 No stress on 3M.SG.OBJ's /u:/ ⇒ no ↑ ⇒ /hu:/ → ∅

■ /mesek-tuː-huː/ 'you caught him' → [mesek'tuː]

Stress on 2sg.sBJ's /u:/ ⇒ /u/-to-V₅ ↑ insertion
/u/-to-V₅ ↑ insertion ⇒ /tu:/ → [tu:]
No stress on 3M.sg.OBJ's /u:/ ⇒ no ↑ ⇒ /hu:/ → Ø

• /mesek-tuz-huz-l-iz/ 'you caught him for me' \rightarrow [mesektu'huzli]

$$C_{1} V_{1} C_{2} V_{2} C_{3} V_{3} C_{4} V_{4} C_{5} V_{5} C_{6} V_{6} C_{7} V_{7} C_{8} V_{8} C_{9} V_{9}$$

$$\stackrel{\uparrow}{\underset{m}{}} \stackrel{\uparrow}{\underset{e}{}} \stackrel{\uparrow}{\underset{k}{}} \stackrel{\uparrow}{\underset{k}{}} \stackrel{\downarrow}{\underset{t}{}} \stackrel{\downarrow}{\underset{u}{}} \stackrel{\downarrow}{\underset{h}{}} \stackrel{\downarrow}{\underset{u}{}} \stackrel{\iota}{\underset{u}{}} \stackrel{\iota}{\underset{u}{} \stackrel{\iota}{\underset{u}{}} \stackrel{\iota}{\underset{u}{}} \stackrel{\iota}{\underset{u}{} } \stackrel{\iota}{\underset{u}{} \stackrel{\iota}{\underset{u}{} } \stackrel{\iota}{\underset{u}{} \stackrel{\iota}{\underset{u}{} } \stackrel{\iota}{\underset{u}{} } \stackrel{\iota}{\underset{u}{} \stackrel{\iota}{\underset{u}{} } \stackrel{\iota}{\underset{u}{} }$$

Stress on 3M.SG.OBJ's /u:/ ⇒ ↑ insertion ⇒ /hu:/ → [hu:]
 No stress on 2SC.SBJ's /u:/ ⇒ no /u/-to-V₅ ↑ ⇒ /tu:/ → [tu]
 V₆ PGs V₅?

No stress on $1 {
m SG.DAT}$ /iː/ \Rightarrow no /i/-to-Vg $\uparrow \Rightarrow$ /iː/ \rightarrow [i]

• /mesek-tuz-huz-l-iz/ 'you caught him for me' \rightarrow [mesektu'huzli]

Stress on 3M.SG.OBJ's /u:/ ⇒ ↑ insertion ⇒ /hu:/ → [hu:]
No stress on 2SG.SBJ's /u:/ ⇒ no /u/-to-V₅ ↑ ⇒ /tu:/ → [tu]
V₆ PGs V₅?

No stress on 1sg.dat /iː/ \Rightarrow no /i/-to-Vg $\uparrow \Rightarrow$ /iː/ \rightarrow [i]

• /mesek-tuz-huz-l-iz/ 'you caught him for me' \rightarrow [mesektu'huzli]

Stress on 3M.SG.OBJ's /u:/ ⇒ ↑ insertion ⇒ /hu:/ → [hu:]
No stress on 2SG.SBJ's /u:/ ⇒ no /u/-to-V₅ ↑ ⇒ /tu:/ → [tu]
V₆ PGs V₅?

• No stress on 1sg.dat /i:/ \Rightarrow no /i/-to-V₉ $\uparrow \Rightarrow$ /i:/ \rightarrow [i]

Interim conclusion

TT allows for a neat formalization of

- Silent phonologically active objects (/hu:/_{3M.SG.OBJ})
- The distribution of stress (always penultimate)
- The correlation of stress and length in corner vowels

Case study II: CEA inflectional markers

Case study II: CEA inflectional markers

Basic patterns and TT - provisional analysis
$$\begin{array}{c} & & & & & & \\ C_1 & V_1 & C_2 & V_2 & C_3 & V_3 & C_4 & V_4 \\ \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\ l & e & b & e & s & t \end{array}$$

• 3F.SG: /lebs-t/ \rightarrow ['lebset]

- $\blacksquare V_4 = \mathsf{EN}, V_4 * \mathsf{PGs} V_3 \Rightarrow V_3 = [e], V_3 \mathsf{PGs} V_2 \Rightarrow V_2 = \emptyset$
- FEN parameter OFF

 $\begin{array}{l} \bullet \quad 3\mathrm{F.SG:} \ /|\mathsf{ebs-t}/ \ \rightarrow \ ['|\mathsf{ebset}] \\ \bullet \quad \mathsf{V}_4 = \mathsf{EN}, \ \mathsf{V}_4 \ ^*\mathsf{PGs} \ \mathsf{V}_3 \Rightarrow \mathsf{V}_3 = [\mathsf{e}], \ \mathsf{V}_3 \ \mathsf{PGs} \ \mathsf{V}_2 \Rightarrow \mathsf{V}_2 = \emptyset \\ \bullet \quad \mathsf{FEN} \ \mathsf{parameter} \ \mathbf{OFF} \end{array}$

Edoardo Cavirani (CRISSP)

Problem

- **FEN** parameters are systemic
- They hold throughout the whole grammar
- \blacksquare If FEN PGs in $1{\rm SG},$ then it should PG in $3{\rm F.SG}$ too

Solution

- The silent final V of 1sg and 1F.sg are different objects
- 1F.SG has a FEN \Rightarrow no PG
- 1sg has a FeN \Rightarrow PG

Problem

- **FEN** parameters are systemic
- They hold throughout the whole grammar
- \blacksquare If FEN PGs in $1 \rm SG$, then it should PG in $3 \rm F.SG$ too

Solution

- The silent final V of 1sg and 1F.sg are different objects
- 1F.SG has a FEN \Rightarrow no PG
- 1SG has a FeN \Rightarrow PG

Problem

- **FEN** parameters are systemic
- They hold throughout the whole grammar
- \blacksquare If FEN PGs in $1{\rm SG},$ then it should PG in $3{\rm F.SG}$ too

Solution

- The silent final V of 1sg and 1F.sg are different objects
- 1F.SG has a FEN \Rightarrow no PG
- 1sg has a FeN \Rightarrow PG

■ $3F.SG: /lebs-t/ \rightarrow ['lebset]$ ■ $V_4 = EN, V_4 *PGs V_3$ ■ FEN parameter OFF

$$\begin{array}{c|c} & & & & & \\ C_1 & V_1 & C_2 & V_2 & C_3 & V_3 & C_4 & V_4 \\ \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\ l & e & b & s & e & t \end{array}$$

• 1sg: /lebs-t/ ightarrow [le'best]

- $V_4 = eN \Rightarrow V_4$ more complex than $V_3 \Rightarrow V_4$ PGs V_3
- FEN parameter OFF, but irrelevant
- Stress on [e] because penultimate

Edoardo Cavirani (CRISSP)

Turbid strict CV

35 / 53

■ $3F.SG: /lebs-t/ \rightarrow ['lebset]$ ■ $V_4 = EN, V_4 *PGs V_3$ ■ FEN parameter OFF

$$\begin{array}{ccccccc} & & & & & & \\ C_1 & V_1 & C_2 & V_2 & C_3 & V_3 & C_4 & V_4 \\ \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\ l & e & b & s & e & t \end{array}$$

1sg: /lebs-t/ → [le'best]
 V₄ = eN ⇒ V₄ more complex than V₃ ⇒ V₄ PGs V₃
 FEN parameter OFF, but irrelevant
 Stress on [e] because penultimate

Edoardo Cavirani (CRISSP)

- **3**G.SG marker: V = EN
 - FEN parameter $ON \Rightarrow PG$
 - FEN parameter OFF ⇒ *PG
 - V invisible to stress algorithm

C V ↓ t

- ISG marker: V = eN
 - FEN parameter $ON \Rightarrow PG$
 - FEN parameter OFF ⇒ PG
 - V visible to stress algorithm

C V ↓ ↓ t e

- **3**G.SG marker: V = EN
 - FEN parameter $ON \Rightarrow PG$
 - FEN parameter OFF ⇒ *PG
 - V invisible to stress algorithm

- 1SG marker: V = eN
 - FEN parameter $ON \Rightarrow PG$
 - FEN parameter OFF ⇒ PG
 - V visible to stress algorithm

$$\begin{array}{ccc} \mathsf{C} & \mathsf{V} \\ \updownarrow & \downarrow \\ \mathsf{t} & \mathsf{e} \end{array}$$

Discarding alternatives

■ 1sg /lebs-t/ \rightarrow [le'best] \Rightarrow FEN parameter ON ■ 3F.sg /lebs-t/ \rightarrow ['lebset] \Rightarrow FEN parameter OFF

What if the 3F.SG marker were different?

Discarding alternatives

1sg /lebs-t/ → [le'best] ⇒ FEN parameter ON
 3F.sg /lebs-t/ → ['lebset] ⇒ FEN parameter OFF

What if the 3F.SG marker were different?

Discarding alternatives - I

1SG /lebs-t/ → [le'best] ⇒ FEN parameter ON 3F.SG /lebs-et/ → ['lebset] ⇒ FEN parameter ON

 $\begin{array}{ccc} \mathsf{C}_1 \ \mathsf{V}_1 \ \mathsf{C}_2 \ \mathsf{V}_2 \\ & \uparrow & \uparrow \\ & e & \mathrm{t} \end{array}$

• $\mathsf{V}_1=\mathsf{full}\;\mathsf{N}\Rightarrow\mathsf{V}_2\; extsf{*}\mathsf{PGs}\;\mathsf{V}_1\Rightarrow\mathsf{no}\;\mathsf{problems}\;\mathsf{with}\;\mathsf{FEN}\;\mathsf{parameter}\;\mathsf{ON}$

Discarding alternatives - I

1SG /lebs-t/ → [le'best] ⇒ FEN parameter ON
 3F.SG /lebs-et/ → ['lebset] ⇒ FEN parameter ON

$$\begin{array}{ccc} \mathsf{C}_1 \ \mathsf{V}_1 \ \mathsf{C}_2 \ \mathsf{V}_2 \\ & \uparrow & \uparrow \\ & \mathrm{e} & \mathrm{t} \end{array}$$

 \blacksquare V1 = full N \Rightarrow V2 *PGs V1 \Rightarrow no problems with FEN parameter ON

Discarding alternatives - I

$$C_1 \bigvee_1 C_2 \bigvee_2 C_3 \bigvee_3 C_4 \bigvee_4 C_5 \bigvee_5$$

$$\downarrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \downarrow \qquad \downarrow$$

$$l \quad e \quad b \quad e \quad s \qquad e \quad t$$

Discarding alternatives - II

3F.SG /lebs-^et/
 /e/ as floating prime

$$egin{array}{ccc} \mathsf{C_1} & \mathsf{V} \\ & \uparrow \\ \mathsf{e} & \mathsf{t} \end{array}$$

Discarding alternatives - II

$$\begin{array}{c|ccccc} & & & & & \\ C_1 & V_1 & C_2 & V_2 & C_3 & V_3 & C_4 & V_4 \\ \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\ 1 & e & b & e & s & e & t \end{array}$$

Discarding alternatives - II

■ 3F.SG /lebs-^et/ & FEN parameter OFF ■ V_4 *PGs $V_3 \Rightarrow$ floating prime integration $\Rightarrow V_3$ PGs V_2 ■ /lebs-^et/ \rightarrow ['lebset]

$$\begin{array}{cccccccc} & & & & & & & \\ C_1 & V_1 & C_2 & V_2 & C_3 & V_3 & C_4 & V_4 \\ \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\ l & e & b & s & e & t \end{array}$$

lacksquare This works iif FEN parameter is OFF and $1\mathrm{sG}$ has a FeN (Fathi 2013)

Edoardo Cavirani (CRISSP)

Turbid strict CV

Discarding alternatives - II

■ $3_{F.SG}$ /lebs-^et/ & FEN parameter OFF ■ V₄ *PGs V₃ ⇒ floating prime integration ⇒ V₃ PGs V₂ ■ /lebs-^et/ → ['lebset]

$$\begin{array}{cccccccc} & & & & & & \\ C_1 & V_1 & C_2 & V_2 & C_3 & V_3 & C_4 & V_4 \\ \uparrow & \uparrow & \uparrow & \uparrow & \uparrow & \uparrow \\ l & e & b & s & e & t \end{array}$$

This works iif FEN parameter is OFF and 1sg has a FeN (Fathi 2013)

Interim conclusion

TT allows for a neat formalization of

- Silent phonologically active objects (the FeN of 1 sg / t /)
- The behaviour of final CC clusters not compatible with FEN parameters

Extensions

Extensions

Formally unclear status

- FEN "can only govern nuclei that do not possess any floating melody in the lexicon" (Scheer 2004: 644)
- 2. Yers = V + floating primes
- 3. If primes are floating \Rightarrow no association with V
- 4. If V is not associated with any prime \Rightarrow V is empty
- 5. (F)EN should not distinguish *yers* from EN

Formally unclear status

1. (F)EN can apparently distinguish EN from yers

 FEN "can only govern nuclei that do not possess any floating melody in the lexicon" (Scheer 2004: 644)

2. Yers = V + floating primes

- 3. If primes are floating \Rightarrow no association with V
- 4. If V is not associated with any prime \Rightarrow V is empty
- (F)EN should not distinguish yers from EN

Formally unclear status

- FEN "can only govern nuclei that do not possess any floating melody in the lexicon" (Scheer 2004: 644)
- 2. Yers = V + floating primes
- 3. If primes are floating \Rightarrow no association with V
- 4. If V is not associated with any prime \Rightarrow V is empty
- 5. (F)EN should not distinguish *yers* from EN

Formally unclear status

- FEN "can only govern nuclei that do not possess any floating melody in the lexicon" (Scheer 2004: 644)
- 2. Yers = V + floating primes
- 3. If primes are floating \Rightarrow no association with V
- 4. If V is not associated with any prime \Rightarrow V is empty
- 5. (F)EN should not distinguish *yers* from EN

Formally unclear status

- FEN "can only govern nuclei that do not possess any floating melody in the lexicon" (Scheer 2004: 644)
- 2. Yers = V +floating primes
- 3. If primes are floating \Rightarrow no association with V
- 4. If V is not associated with any prime \Rightarrow V is empty
- 5. (F)EN should not distinguish yers from EN

Unconstrained landing site of floating primes

- If primes for V = primes for C (Element Theory), and
- If yer's V is PGed
- Floating primes of yers could associate with neighbouring C
 - \blacksquare Possibly unattested alternations: tf_CV \sim kiC_
- Floating primes of yers 'prefer' to associate with 'their' V
- How to define 'ownership'? (see above)

Unconstrained landing site of floating primes

- If primes for V = primes for C (Element Theory), and
- If yer's V is PGed
- Floating primes of *yers* could associate with neighbouring C
 - \blacksquare Possibly unattested alternations: <code>tf_CV</code> \sim kiC_
- Floating primes of *yers* 'prefer' to associate with 'their' V
 How to define 'ownership'? (see above)

Unconstrained landing site of floating primes

- If primes for V = primes for C (Element Theory), and
- If yer's V is PGed
- Floating primes of *yers* could associate with neighbouring C
 - \blacksquare Possibly unattested alternations: <code>tf_CV</code> \sim kiC_
- Floating primes of yers 'prefer' to associate with 'their' V
- How to define 'ownership'? (see above)

Unconstrained landing site of floating primes

- If primes for V = primes for C (Element Theory), and
- If yer's V is PGed
- Floating primes of *yers* could associate with neighbouring C

 \blacksquare Possibly unattested alternations: <code>tf_CV</code> \sim kiC_

- Floating primes of *yers* 'prefer' to associate with 'their' V
- How to define 'ownership'? (see above)

No problem if yers = eN

- 1. eN project a melodic prime \Rightarrow the prime is integrated in the phonological string
- 2. EN can 'see' the prime \Rightarrow FEN can distinguish between EN and eN .
- 3. The melodic prime of a eN is pronounced on the prosodic node from which it is projected
 - Unless forced to be pronounced elsewhere (CA *transfer*; Bohas & Lowenstamm 2021, Cavirani 2022)

- No problem if *yers* = eN
 - 1. eN *project* a melodic prime \Rightarrow the prime is integrated in the phonological string
 - 2. EN can 'see' the prime \Rightarrow FEN can distinguish between EN and eN
 - The melodic prime of a eN is pronounced on the prosodic node from which it is projected
 - Unless forced to be pronounced elsewhere (CA transfer; Bohas & Lowenstamm 2021, Cavirani 2022)

- No problem if yers = eN
 - 1. eN *project* a melodic prime \Rightarrow the prime is integrated in the phonological string
 - 2. EN can 'see' the prime \Rightarrow FEN can distinguish between EN and eN
 - **3**. The melodic prime of a eN is pronounced on the prosodic node from which it is projected
 - Unless forced to be pronounced elsewhere (CA *transfer*; Bohas & Lowenstamm 2021, Cavirani 2022)

Extensions

On magic licensing/syllabic consonants

■ Getting rid of *magic* licensing (*s*TRV)

 /s/ fills in/spreads to the EN occurring between /s/ and C (Carvalho 2017; Prince & Ferré 2020; Scheer & Segeral 2020)

$$\begin{array}{c|c} C_1 & V_1 & C_2 & V_2 & C_3 & V_3 & C_4 & V_4 \\ \hline & & & | / & | & | & | \\ & & s & T & \leftarrow R & A \end{array}$$

Syllabicity of C

 "Potentially-syllabic consonants /l,n/ must always be associated to a V-slot" (Faust 2022)

$$\begin{array}{c|cccc} C_1 & V_1 & C_2 & V_2 & C_3 & V_3 \\ | & | & | & & \backslash | \\ d & a & v & n \end{array}$$

On magic licensing/syllabic consonants

Orthodox use

- Representing length
 - C:= melodic prime associated to 2 C
 - V:= melodic prime associated to 2 V

Defining the phonetic interpretation

$$|A|, |I|, |U| in V = [a], [i], [u] |A|, |I|, |U| in V = [r], [i], [w]$$

On magic licensing/syllabic consonants

Heterodox use of association relations

• /s/ surfaces as [s] \Rightarrow neither long nor syllabic

$$\begin{array}{c|c} C_1 & V_1 & C_2 & V_2 & C_3 & V_3 & C_4 & V_4 \\ \hline & & & | / & | & | & | \\ & s & T & \longleftarrow R & A \end{array}$$

• /n/ surfaces as $[n] \Rightarrow$ neither long nor consonantal

$$\begin{array}{c|c} C_1 \ V_1 \ C_2 \ V_2 \ C_3 \ V_3 \\ | \ | \ | \ | \ & \ \\ d \ a \ v \ n \end{array}$$

On magic licensing/syllabic consonants

Heterodox use of association relations

• /s/ surfaces as [s] \Rightarrow neither long nor syllabic

$$\begin{array}{c|c} C_1 & V_1 & C_2 & V_2 & C_3 & V_3 & C_4 & V_4 \\ \hline & & & & | / & | & | & | \\ & s & T & \longleftarrow R & A \end{array}$$

 \blacksquare /n/ surfaces as [n] \Rightarrow neither long nor consonantal

$$\begin{array}{c|c} C_1 \ V_1 \ C_2 \ V_2 \ C_3 \ V_3 \\ | \ | \ | \ | \ & \ & \ \\ d \ a \ v \ n \end{array}$$
Extensions

On magic licensing/syllabic consonants

A coherent doxa

- \blacksquare /s/ is projected by C_2 and V_2 \Rightarrow /s/ 'is' both a C and a V
- /s/ is pronounced only in $C_2 \Rightarrow$ /s/ surfaces as [s]

/n/ is projected by C₃ and V₂ ⇒ /n/ 'is' both a C and a V
/s/ is pronounced only in V₂ ⇒ /n/ surfaces as [n]

 $\begin{array}{cccc} C_1 & V_1 & C_2 & V_2 & C_3 & V_3 \\ \uparrow & \uparrow & \uparrow & & \searrow \\ d & a & v & n \end{array}$

Extensions

On magic licensing/syllabic consonants

A coherent doxa

- \blacksquare /s/ is projected by C_2 and V_2 \Rightarrow /s/ 'is' both a C and a V
- /s/ is **pronounced** only in $C_2 \Rightarrow /s/$ surfaces as [s]

■ /n/ is **projected** by C₃ and V₂ \Rightarrow /n/ 'is' both a C and a V ■ /s/ is **pronounced** only in V₂ \Rightarrow /n/ surfaces as [n]

$$\begin{array}{cccc} C_1 & V_1 & C_2 & V_2 & C_3 & V_3 \\ \uparrow & \uparrow & \uparrow & \swarrow \\ d & a & v & n \end{array}$$

Edoardo Cavirani (CRISSP)

Conclusion

- Phonological activity of silent objects (/hur/_{3M.SG.OBJ}, /t/_{1SG}'s FeN)
- Regularization of the distribution of stress (always penultimate)
- Formalization of the correlation of stress and length in corner vowels
- Regularization of the behaviour of final CC clusters not compatible with FEN parameters
- General
 - Improved formalization of yers
 - Improved formalization of *magic* licensing and syllabic C configurations
- Even more general
 - Direct relation between lateral actorship and representational complexity
 - Reducing the need for FEN parameters: lateral strength encoded in the Lexicon
 - Accounting for *phonological traces* (not this talk, but you can ask)

- Phonological activity of silent objects (/hu: $/_{\rm 3M.SG.OBJ}$, /t/ $_{\rm 1SG}$'s FeN)
- Regularization of the distribution of stress (always penultimate
- Formalization of the correlation of stress and length in corner vowels
- Regularization of the behaviour of final CC clusters not compatible with FEN parameters
- General
 - Improved formalization of yers
 - Improved formalization of *magic* licensing and syllabic C configurations
- Even more general
 - Direct relation between lateral actorship and representational complexity
 - Reducing the need for FEN parameters: lateral strength encoded in the Lexicon
 - Accounting for *phonological traces* (not this talk, but you can ask)

- Phonological activity of silent objects (/hu: $/_{\rm 3M.SG.OBJ}$, /t/ $_{\rm 1SG}$'s FeN)
- Regularization of the distribution of stress (always penultimate)
- Formalization of the correlation of stress and length in corner vowels
- Regularization of the behaviour of final CC clusters not compatible with FEN parameters
- General
 - Improved formalization of yers
 - Improved formalization of *magic* licensing and syllabic C configurations
- Even more general
 - Direct relation between lateral actorship and representational complexity
 - Reducing the need for FEN parameters: lateral strength encoded in the Lexicon
 - Accounting for *phonological traces* (not this talk, but you can ask)

- Phonological activity of silent objects (/hu: $/_{3M.SG.OBJ}$, /t/ $_{1SG}$'s FeN)
- Regularization of the distribution of stress (always penultimate)
- Formalization of the correlation of stress and length in corner vowels
- Regularization of the behaviour of final CC clusters not compatible with FEN parameters
- General
 - Improved formalization of yers
 - Improved formalization of magic licensing and syllabic C configurations
- Even more general
 - Direct relation between lateral actorship and representational complexity
 - Reducing the need for FEN parameters: lateral strength encoded in the Lexicon
 - Accounting for *phonological traces* (not this talk, but you can ask)

Why upgrading strict CV with TT is a good idea

- Phonological activity of silent objects (/hu: $/_{3M.SG.OBJ}$, /t/ $_{1SG}$'s FeN)
- Regularization of the distribution of stress (always penultimate)
- Formalization of the correlation of stress and length in corner vowels
- Regularization of the behaviour of final CC clusters not compatible with FEN parameters
- General
 - Improved formalization of yers
 - Improved formalization of magic licensing and syllabic C configurations
- Even more general
 - Direct relation between lateral actorship and representational complexity
 - Reducing the need for FEN parameters: lateral strength encoded in the Lexicon
 - Accounting for phonological traces (not this talk, but you can ask)

Why upgrading strict CV with TT is a good idea

Specific

- Phonological activity of silent objects (/hu: $/_{3M.SG.OBJ}$, /t/ $_{1SG}$'s FeN)
- Regularization of the distribution of stress (always penultimate)
- Formalization of the correlation of stress and length in corner vowels
- Regularization of the behaviour of final CC clusters not compatible with FEN parameters

General

- Improved formalization of yers
- Improved formalization of magic licensing and syllabic C configurations

Even more general

- Direct relation between lateral actorship and representational complexity
- Reducing the need for FEN parameters: lateral strength encoded in the Lexicon
- Accounting for *phonological traces* (not this talk, but you can ask)

Why upgrading strict CV with TT is a good idea

- Phonological activity of silent objects (/hu: $/_{3M.SG.OBJ}$, /t/ $_{1SG}$'s FeN)
- Regularization of the distribution of stress (always penultimate)
- Formalization of the correlation of stress and length in corner vowels
- Regularization of the behaviour of final CC clusters not compatible with FEN parameters
- General
 - Improved formalization of yers
 - Improved formalization of magic licensing and syllabic C configurations
- Even more general
 - Direct relation between lateral actorship and representational complexity
 - Reducing the need for FEN parameters: lateral strength encoded in the Lexicon
 - Accounting for *phonological traces* (not this talk, but you can ask)

Why upgrading strict CV with TT is a good idea

Specific

- Phonological activity of silent objects (/hu: $/_{3M.SG.OBJ}$, /t/ $_{1SG}$'s FeN)
- Regularization of the distribution of stress (always penultimate)
- Formalization of the correlation of stress and length in corner vowels
- Regularization of the behaviour of final CC clusters not compatible with FEN parameters

General

- Improved formalization of yers
- Improved formalization of magic licensing and syllabic C configurations

Even more general

- Direct relation between lateral actorship and representational complexity
- Reducing the need for FEN parameters: lateral strength encoded in the Lexicon
- Accounting for phonological traces (not this talk, but you can ask)

Why upgrading strict CV with TT is a good idea

- Phonological activity of silent objects (/hu: $/_{3M.SG.OBJ}$, /t/ $_{1SG}$'s FeN)
- Regularization of the distribution of stress (always penultimate)
- Formalization of the correlation of stress and length in corner vowels
- Regularization of the behaviour of final CC clusters not compatible with FEN parameters
- General
 - Improved formalization of yers
 - Improved formalization of magic licensing and syllabic C configurations
- Even more general
 - Direct relation between lateral actorship and representational complexity
 - Reducing the need for FEN parameters: lateral strength encoded in the Lexicon
 - Accounting for *phonological traces* (not this talk, but you can ask)

Why upgrading strict CV with TT is a good idea

- Phonological activity of silent objects (/hu: $/_{3M.SG.OBJ}$, /t/ $_{1SG}$'s FeN)
- Regularization of the distribution of stress (always penultimate)
- Formalization of the correlation of stress and length in corner vowels
- Regularization of the behaviour of final CC clusters not compatible with FEN parameters
- General
 - Improved formalization of yers
 - Improved formalization of *magic* licensing and syllabic C configurations
- Even more general
 - Direct relation between lateral actorship and representational complexity
 - Reducing the need for FEN parameters: lateral strength encoded in the Lexicon
 - Accounting for *phonological traces* (not this talk, but you can ask)

Why upgrading strict CV with TT is a good idea

- Phonological activity of silent objects (/hu: $/_{3M.SG.OBJ}$, /t/ $_{1SG}$'s FeN)
- Regularization of the distribution of stress (always penultimate)
- Formalization of the correlation of stress and length in corner vowels
- Regularization of the behaviour of final CC clusters not compatible with FEN parameters
- General
 - Improved formalization of yers
 - Improved formalization of *magic* licensing and syllabic C configurations
- Even more general
 - Direct relation between lateral actorship and representational complexity
 - Reducing the need for FEN parameters: lateral strength encoded in the Lexicon
 - Accounting for *phonological traces* (not this talk, but you can ask)