Root suppletion and phrasal lexicalisation: support from Korean

Pavel Caha¹ Karen De Clercq² Guido Vanden Wyngaerd³

¹Masaryk University (Brno)

²CNRS/LLF/Université Paris Cité

³KU Leuven (Brussels)

Morpho-Syn Syndicate Speaker Series & Reading Group 28 March 2022

Late insertion

The challenge

Phrasal lexicalisation and pointers

Multiple exponence

Non-local allomorphy

A Korean paradox

Causative intervention

Decomposing HON

Adding causatives

Adding negation

Explaining the paradox

Korean po-constructions

Late insertion

The challenge

Phrasal lexicalisation and pointers

Multiple exponence

Non-local allomorphy

A Korean paradox

Causative intervention

Decomposing HON

Adding causatives

Adding negation

Explaining the paradox

Korean po-constructions

A late insertion model of grammar

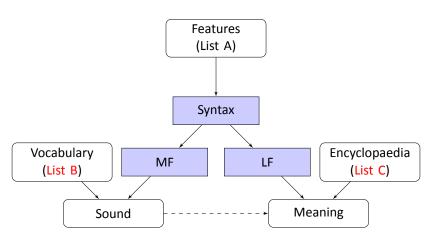


Figure 1: The DM model as in Harley & Noyer (1999)

Late Insertion

- Two advantages of Late Insertion models:
- 1. Universality
- 2. Modularity

Late Insertion

- Two advantages of Late Insertion models:
- 1. Universality
- 2. Modularity
- (1) Strong Modularity Thesis (SMT)
 Syntactic representations only contain entities that are relevant for the application of syntactic principles and operations.

Goals

- Discuss a potential challenge for Universality and SMT having to do with the treatment of suppletion
- Propose an alternative treatment in terms of phrasal lexicalisation
- Discuss two potential problems for phrasal lexicalisation:
 - Multiple exponence
 - Non-local allomorphy

Late insertion

The challenge

Phrasal lexicalisation and pointers

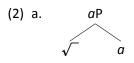
Multiple exponence

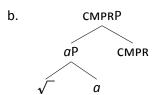
Non-local allomorphy

A Korean paradox

Causative intervention

Decomposing HON


Adding causatives


Adding negation

Explaining the paradox

Korean po-constructions

The challenge

- (3) a. $\sqrt{\ }\Leftrightarrow good, nice, happy, small, old, ...$
 - b. $\sqrt{} \Leftrightarrow bett-/__]a]CMPR]$
 - c. $a \Leftrightarrow \emptyset$
 - d. CMPR \Leftrightarrow -er

The challenge

- Two solutions:
 - suppletive adjectives belong to the functional vocabulary (List A), see (4) (Marantz 1997)
 - roots are individuated by means of an index, see (5) (Pfau 2000; Harley 2014)
- (4) a. [EVAL:POSITIVE] \iff bett-/___] a] CMPR]
 - b. [EVAL:POSITIVE] \iff good
- (5) a. $\sqrt{153} \iff bett-/ _] a] CMPR]$
 - b. $\sqrt{153} \iff good$

The challenge

- Marantz' solution does not generalise to all cases of suppletion (Harley 2014).
- Harley's violates SMT: the index on the root is not relevant to the syntactic computation.
- Harley's also raises questions about universality:
 - is the set of all indexed roots $\{\sqrt{1}, \dots, \sqrt{n}\}$ the same for all languages?
 - do we have indexed roots for cultural artefacts like books, bicycles, smartphones, ...?

Late insertion

The challenge

Phrasal lexicalisation and pointers

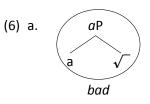
Multiple exponence

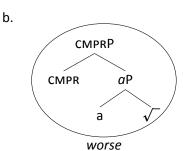
Non-local allomorphy

A Korean paradox

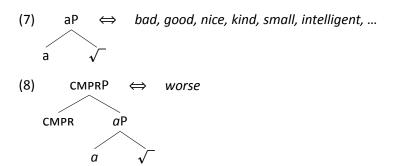
Causative intervention

Decomposing HON

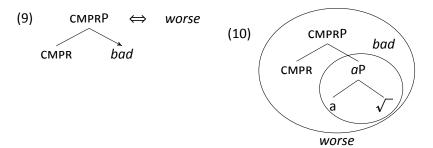

Adding causatives


Adding negation

Explaining the paradox


Korean po-constructions

Phrasal lexicalisation and pointers



Phrasal lexicalisation and pointers

Phrasal lexicalisation and pointers

Late insertion

The challenge

Phrasal lexicalisation and pointers

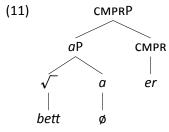
Multiple exponence

Non-local allomorphy

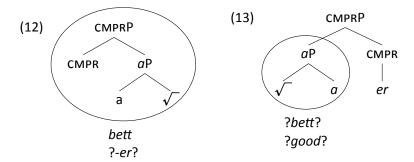
A Korean paradox

Causative intervention

Decomposing HON

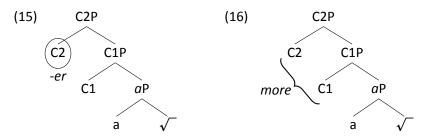

Adding causatives

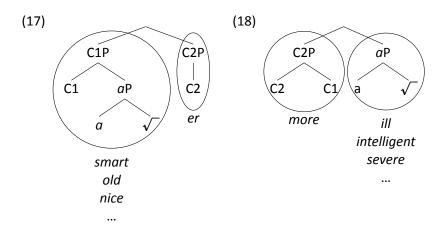
Adding negation


Explaining the paradox

Korean po-constructions

Multiple exponence

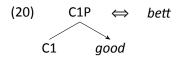

Multiple exponence

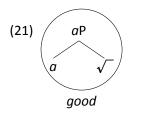

Full vs reduced marking of the comparative

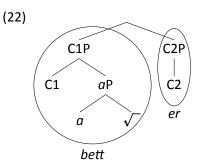
(14)		reduced	full	
	CMPR	-er	mo-re	
	SPRL	-est	mo-st	

Splitting CMPR

Large root, small affix

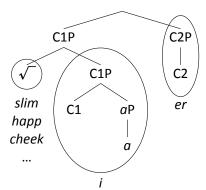

Large root, small affix




(19) The Superset Principle (Starke 2009)

A lexically stored tree L matches a syntactic node S iff L contains the syntactic tree dominated by S as a subtree

Multiple exponence again



Multiple exponence

(23) a. slim-i-er, happ-i-er, cheek-i-er, ... b.

Late insertion

The challenge

Phrasal lexicalisation and pointers

Multiple exponence

Non-local allomorphy

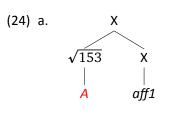
A Korean paradox

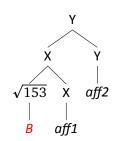
Causative intervention

Decomposing HON

Adding causatives

Adding negation


Explaining the paradox


Korean po-constructions

Non-local allomorphy

Choi & Harley (2019) discuss a case from Korean where root allomorphy is conditioned by a head across an intervening affix.

b.

Non-local allomorphy

- what appears to be nonlocal is only so under certain assumptions about the structure
- if we enrich the structure, what looked like a case of nonlocal allomorphy starts looking like local allomorphy

Late insertion

The challenge

Phrasal lexicalisation and pointers

Multiple exponence

Non-local allomorphy

A Korean paradox

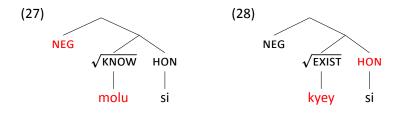
Causative intervention

Decomposing HON

Adding causatives

Adding negation

Explaining the paradox


Korean po-constructions

(25)		regular pattern	√EXIST	√KNOW
	a.	\sqrt{X}	iss	al
	b.	NEG \sqrt{X}	eps	molu
	c.	\sqrt{X} hon	kyey-si	al-si

(25)	regular pattern		√EXIST	√KNOW
	a.	\sqrt{X}	iss	al
	b.	NEG \sqrt{X}	eps	molu
	c.	\sqrt{X} hon	kyey-si	al-si
	d.	NEG \sqrt{X} HON	ani/mos kyey-si	molu-si

(25)	regular pattern		√EXIST	√KNOW
	a.	\sqrt{X}	iss	al
	b.	NEG \sqrt{X}	eps	molu
	c.	\sqrt{X} hon	kyey-si	al-si
	d.	NEG \sqrt{X} HON	ani/mos kyey-si	molu-si

(26) a. NEG > HON >
$$\sqrt{\text{EXIST}}$$

b. HON > NEG > $\sqrt{\text{KNOW}}$

Late insertion

The challenge

Phrasal lexicalisation and pointers

Multiple exponence

Non-local allomorphy

A Korean paradox

Causative intervention

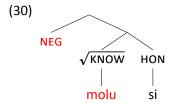
Decomposing HON

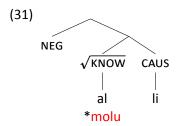
Adding causatives

Adding negation

Explaining the paradox

Korean po-constructions

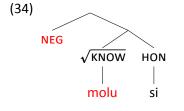

Causative intervention

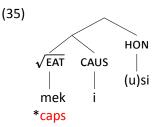

- We discuss two cases that are structurally analogous, but that show different behaviour
- When a causative head intervenes between the root and NEG or HON, suppletive realisation of the root is blocked
- This suggests that suppletion is strictly local

Causative intervention

```
(29)
                                           'know'
              √KNOW
                                     al
      a.
                                  molu
                                           'not know'
      b.
          NEG √KNOW
              √KNOW CAUS
                                     al-li
                                           'let know, inform'
                            ani/mos al-li
                                           'not inform'
      d.
          NEG √KNOW CAUS
```

Causative intervention





Causative intervention

(32)		ROOT-DECL	ROOT-HON-DE	CL ROOT-HON-DECL	
	a.	mek-ta	*mek-usi-ta	caps-usi-ta	'eat'
	b.	ca-ta	*ca-si-ta	cwum-usi-ta	'sleep'
	c.	iss-ta	iss-usi-ta	kyey-si-ta	'be'
(33)	a.	\sqrt{EAT}	mek	'eat'	
	b.	\sqrt{EAT} CAUS	mek-i	'let eat'	
	c.	\sqrt{EAT} HON	caps-usi	'eat'	
	d.	√EAT CAUS HO	วง mek-i-si	'let eat'	

Causative intervention

Outline

Late insertion

The challenge

Phrasal lexicalisation and pointers

Multiple exponence

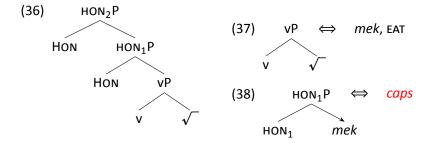
Non-local allomorphy

A Korean paradox

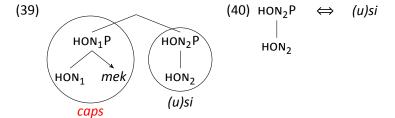
Causative intervention

Decomposing HON

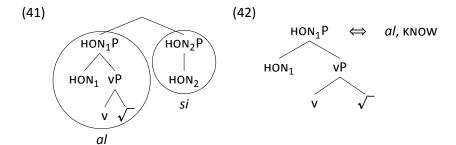
Adding causatives


Adding negation

Explaining the paradox


Korean po-constructions

Conclusion


Decomposing HON

Decomposing HON

Decomposing HON

Outline

Late insertion

The challenge

Phrasal lexicalisation and pointers

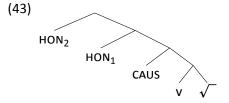
Multiple exponence

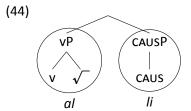
Non-local allomorphy

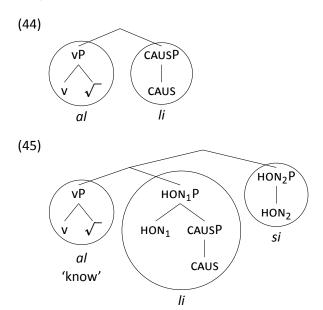
A Korean paradox

Causative intervention

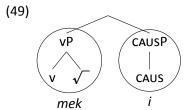
Decomposing HON

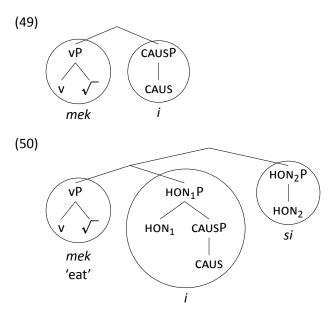

Adding causatives


Adding negation


Explaining the paradox

Korean po-constructions


Conclusion



(47)
$$\operatorname{HON_1P} \iff \operatorname{caps}$$
 (48) $\operatorname{VP} \iff \operatorname{mek}, \operatorname{EAT}$ $\operatorname{HON_1} \mod \operatorname{mek}$

Outline

Late insertion

The challenge

Phrasal lexicalisation and pointers

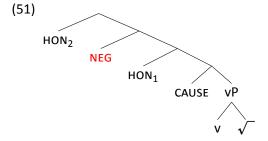
Multiple exponence

Non-local allomorphy

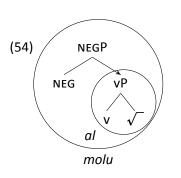
A Korean paradox

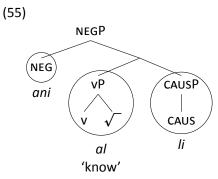
Causative intervention

Decomposing HON


Adding causatives

Adding negation


Explaining the paradox


Korean po-constructions

Conclusion


```
(56)
                                      al
                                            'know'
               √KNOW
      a.
      b.
          NEG √KNOW
                                   molu
                                            'not know'
               √KNOW CAUS
                                      al-li
                                           'let know, inform'
                             ani/mos al-li
                                           'not inform'
      d.
          NEG √KNOW CAUS
```

Outline

Late insertion

The challenge

Phrasal lexicalisation and pointers

Multiple exponence

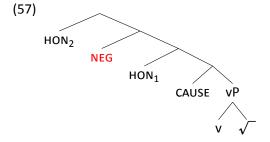
Non-local allomorphy

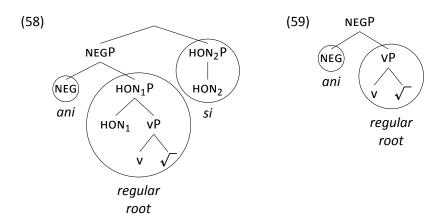
A Korean paradox

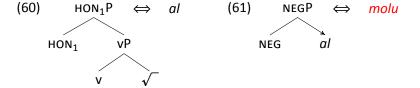
Causative intervention

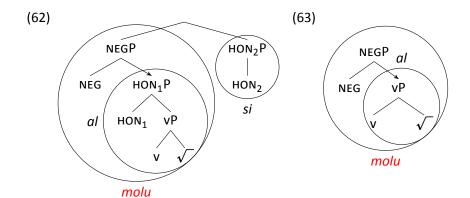
Decomposing HON

Adding causatives

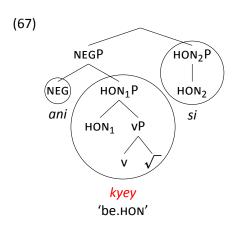

Adding negation

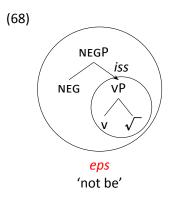

Explaining the paradox


Korean po-constructions


Conclusion

(25)	regular pattern		√EXIST	√KNOW	
	a.	\sqrt{X}	iss	al	
	b.	NEG \sqrt{X}	eps	molu	
	c.	\sqrt{X} HON	kyey-si	al-si	
	d.	NEG \sqrt{X} HON	ani/mos kyey-si	molu-si	





Outline

Late insertion

The challenge

Phrasal lexicalisation and pointers

Multiple exponence

Non-local allomorphy

A Korean paradox

Causative intervention

Decomposing HON

Adding causatives

Adding negation

Explaining the paradox

Korean po-constructions

Conclusion

A pickle?

- (69) a. Halapeci-kkeyse ku chayk-ul ilk-(*usi)-e grandfather-NOM.HON the book-ACC read-HON-E po-si-ess-ta try-HON-PST-DECL 'Grandfather tried to read the book.'
 - b. Halapeci-kkeyse pang-eyse cwum-usi-e grandfather-NOM.HON room-in sleep-HON-E po-si-ess-ta try-HON-PST-DECL 'Grandfather tried to sleep in the room.'

(70) Halapeci-kkeyse cokum ca-a po-si-ess-ta granddad-NOM.HON a.little sleep-E try-HON-PST-DECL 'Grandfather tried to sleep a little.'

Choi & Harley (2019):

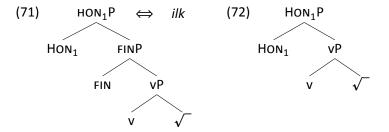
- suppletive honorific verbs have been reanalysed and are no longer decomposable
- suppletion can be triggered by a higher ном-head
- -(u)si on the suppletive honorific verb is not a suffix

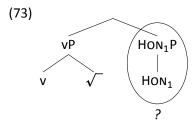
Two issues

- ▶ all the roots that show honorific suppletion end in -(u)si
 - Choi & Harley (2019) have to treat this as an accident
- Choi & Harley (2019) are forced to adopt an additional rule of exponence for -(u)si
 - HON ← Ø / [{cwumwusi, kyeysi, capswusi} _]
 - Hon ←→ -(u)si / elsewhere

Solution (Part 1): Restructuring

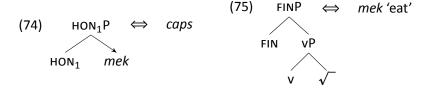
- non-finite clauses = restructuring environment (cf. Wurmbrand 2001)
- ► non-finite clause may be impoverished i.e. lack HON heads, even when the context is honorific

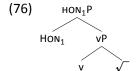

- non-finite clauses lack a FIN feature
- in finite clauses FIN sits below HON₁
- update of the fseq:


Solution (Part II): Update lexical items

- verbs are specified for FIN
- suppletive lexical items have pointers

Regular roots: ilk 'read'

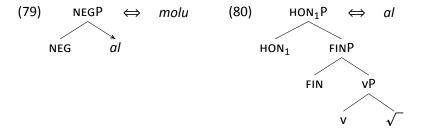



ightharpoonup ilk- 'read' (71) cannot lexicalise HON₁ in a non-finite environment (76).

- ▶ no LI in Korean spells out just HON₁P
- HON₁ cannot be realised in non-finite environment
- derivation will backtrack, vP will be lexicalised
- HON₂ builds on HON₁ and will not be merged

Suppletive roots

- (74) has a pointer to the regular root (75)
- ► (75) can shrink at the top and lexicalise just vP, and hence a structure without FIN, (76)

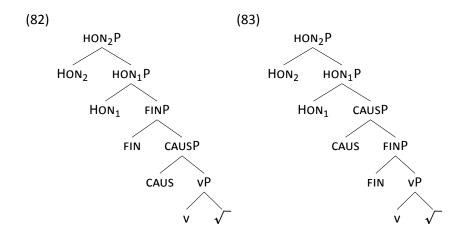

Suppletive roots and free variation

- (77) Halapeci-kkeyse cokum ca-a po-si-ess-ta granddad-NOM.HON a.little sleep-E try-HON-PST-DECL 'Grandfather tried to sleep a little.'
 - only vP is lexicalised
 - po-verbs can select for full or reduced infinitival complements
 - impoverishment is optional and depends on the structure of the lexicon

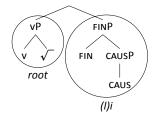
Negative suppletion in po-construction

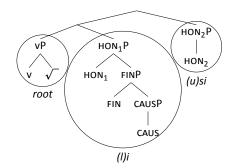
(78) Halapeci-kkeyse ku cakphwum-uy kachi-lul grandfather-HON.NOM DEM work-GEN value-ACC moll-a po-si-ess-ta.

NEG.know-E see-HON-PST-DECL 'Grandfather failed to appreciate the value of the work.'

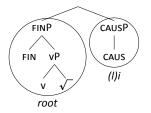

Prediction: HON₁ cannot be present and hence HON₂ cannot be either.

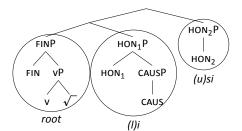
(81) Halapeci-kkeyse ku cakphwum-uy kachi-lul grandfather-HON.NOM DEM work-GEN value-ACC molu-(*si)-e po-si-ess-ta.


NEG.know-HON-E see-HON-PST-DECL 'Grandfather failed to appreciate the value of the work.


(Jaehoon Choi, p.c.)

What about causation?


Option 1: FIN > CAUS



- Prediction: causatives under po should not allow honorific marking
- ▶ Why? presence of HON₁ presupposes presence of FIN

Option 2: CAUS > FIN

- ▶ Prediction: causatives under po should allow honorific marking
- Why? the root should be able to shrink to a nonfinite vP and HON₁ can be lexicalised by the causative suffix

FIN > CAUS

(84) Halapeci-kkeyse ai-tul-eykey chayk-ul grandfather-NOM.HON children-PL-DAT book-ACC ilk-hi-(*si)-e po-si-ess-ta. read-CAUS-HON-E try-HON-PST-DECL 'Grandfather tried to make the children read the book.'

- the analysis we propose captures the facts without the need to treat the suppletive verbs as non-decomposable.
- we can explain why all honorific forms end in -(u)si
- we need no zero allomorph of the relevant ном head.
- a decompositional analysis of suppletive honorifics can be maintained despite the curious pattern that they exhibit in the complement of po 'try', and related verbs.

Outline

Late insertion

The challenge

Phrasal lexicalisation and pointers

Multiple exponence

Non-local allomorphy

A Korean paradox

Causative intervention

Decomposing HON

Adding causatives

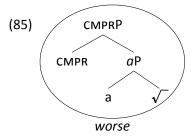
Adding negation

Explaining the paradox

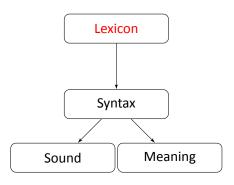
Korean po-constructions

Conclusion

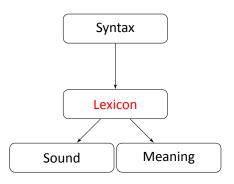
Conclusion

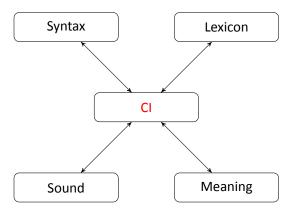

- Root suppletion can be accounted for while maintaining the SMT, if
 - bottom-up phrasal lexicalisation is adopted
 - $ightharpoonup \sqrt{\ }$ s are kept distinct from morphological roots
- indexed roots are dispensed with
- Multiple exponence and non-local allomorphy, often considered arguments against phrasal lexicalisation, can be dealt with nicely by a more fine-grained decomposition.

References


- Choi, Jaehoon & Heidi Harley. 2019. Locality domains and morphological rules. Phases, heads, node-sprouting and suppletion in Korean honorification. *Natural Language & Linguistic Theory* 37. 1319–1365.
- Harley, Heidi. 2014. On the identity of roots. *Theoretical Linguistics* 40. 225-276.
- Harley, Heidi & Rolf Noyer. 1999. State-of-the-article: distributed morphology. Glot International 4.3–9.
- Marantz, Alec. 1997. No escape from syntax: Don't try morphological analysis in the privacy of your own lexicon. In Alexis Dimitriadis, Laura Siegel, Clarissa Surek-Clark & Alexander Williams (eds.), University of Pennsylvania working papers in linguistics, vol. 4 2. 201–225. University of Pennsylvania.
- Pfau, Roland. 2000. Features and categories in language production. Frankfurt am Main: Johann Wolfgang Goethe-Universität dissertation.
- Starke, Michal. 2009. Nanosyntax: A short primer to a new approach to language. Nordlyd 36. 1-6.
- Wurmbrand, Susi. 2001. *Infinitives: Restructuring and clause structure*. Mouton de Gruyter. 4 0 1 4 10 1 4 2 1 4 2 1 2

SMT in NS


Do the NS derivations not violate the Strong Modularity Thesis?


The Y-model

The Y-model

The X-model

SMT in NS

- Central Interface (CI)
 - reads both syntactic and lexical information
 - sends 'pass' or 'fail' to the syntax (no phonology or concepts)
 - keeps a record of successful lexicalisations

SMT in NS

- Central Interface (CI)
 - reads both syntactic and lexical information
 - sends 'pass' or 'fail' to the syntax (no phonology or concepts)
 - keeps a record of successful lexicalisations
- ⇒ Syntax is phonology- and concept-free (in accordance with SMT)