
Ageing nuclei

A formal approach to vowel (dis)appearance in Lunigiana dialects

Edoardo Cavirani

CRISSP KU Leuven

Stony Brook 14 October 2022

Pr.Rom. NP inflection (simplified)

$$ullet$$
 $\sqrt{+o_{ ext{M.SG}}/a_{ ext{F.SG}}/\emph{i}_{ ext{M.PL}}/e_{ ext{F.PL}}}$

3 / 81

Pontr. NP inflection

■ $\sqrt{+ \varnothing_{\text{M.SG/F.PL}}/a_{\text{F.SG}}/i_{\text{M.PL}}}$ ■ If WF-C = N then M.PL $\Rightarrow \varnothing$

■ a and u repair word-final clusters violating SSG (gr#, sn#)

a and u are epenthetic

Pontr. NP inflection

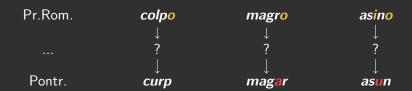
- lacksquare $\sqrt{} + egin{align*} egin{align*} oldsymbol{a}_{ ext{M.SG/F.PL}} / oldsymbol{a}_{ ext{F.SG}} / oldsymbol{i}_{ ext{M.PL}} \end{aligned}$
 - If WF-C = N then $M.PL \Rightarrow \emptyset$

a and u repair word-final clusters violating SSG (gr#, sn#)

a and u are epenthetic

Pontr. NP inflection

- $\blacksquare \sqrt{+ \varnothing_{\mathrm{M.SG/F.PL}}/a_{\mathrm{F.SG}}/i_{\mathrm{M.PL}}}$
 - If WF-C = N then M.PL $\Rightarrow \emptyset$


a and u repair word-final clusters violating SSG (gr#, sn#)

a and u are epenthetic

Ageing nuclei

- What happened between Pr.Rom. and Pontr.?
- How do epenthetic vowels appear?
- How con we best formalize these changes?

- What happened between Pr.Rom. and Pontr.?
- How do epenthetic vowels appear?
- How con we best formalize these changes?

- What happened between Pr.Rom. and Pontr.?
- How do epenthetic vowels appear?
- How con we best formalize these changes?

- What happened between Pr.Rom. and Pontr.?
- How do epenthetic vowels appear?
- How con we best formalize these changes?

Hypotheses

- Diatopic microvariation can provide an answer
 - Neighbouring dialects display the various stages of a diachronic change
 - Wave Theory (Schmidt 1872)
- Phonetic and phonological analysis of Pontr. and Carr
 - Carr. = vocoid intrusion
 - Pontr. = vowel epenthesis
- BiPhon allows for the formalization of these changes/patterns
 - Intrusion-to-epenthesis
 - Life cycle of phonological processes (Bermúdez-Otero 2015)

Hypotheses

- Diatopic microvariation can provide an answer
 - Neighbouring dialects display the various stages of a diachronic change
 - Wave Theory (Schmidt 1872)
- Phonetic and phonological analysis of Pontr. and Carr.
 - Carr. = vocoid intrusion
 - Pontr. = vowel epenthesis
- BiPhon allows for the formalization of these changes/patterns
 - Intrusion-to-epenthesis
 - Life cycle of phonological processes (Bermúdez-Otero 2015)

Hypotheses

- Diatopic microvariation can provide an answer
 - Neighbouring dialects display the various stages of a diachronic change
 - Wave Theory (Schmidt 1872)
- Phonetic and phonological analysis of Pontr. and Carr.
 - Carr. = vocoid intrusion
 - Pontr. = vowel epenthesis
- BiPhon allows for the formalization of these changes/patterns
 - Intrusion-to-epenthesis
 - Life cycle of phonological processes (Bermúdez-Otero 2015)

Structure of the talk

- Dialectological overview
- 2 Results
- 3 Analysis
- 4 Conclusion
- 5 Discussion
 - The place of variation
 - Vowel reduction

Dialectological overview

Dialectological overview

Edoardo Cavirani (CRISSP)

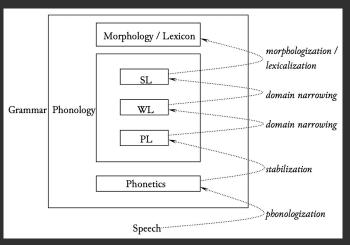
- Wave Theory (Schmidt 1872)
 - Gradual diffusion of a process from a center towards the periphery
 - Different synchronic statuses of the process

- Wave Theory (Schmidt 1872)
 - Gradual diffusion of a process from a center towards the periphery
 - Different synchronic statuses of the process

Edoardo Cavirani (CRISSP)

- Wave Theory (Schmidt 1872)
 - Gradual diffusion of a process from a center towards the periphery
 - Different synchronic statuses of the process
 - **Center**: systematic and categorical behavior ⇒ **phonological** process
 - The life cycle of a phonological process (Bermúdez-Otero 2015
 - Diachronically, ph processes climb up the grammar architectu
 - tragrammatical factors [gets] embedded in the grammar of a language first as a language-specific gradient process of phonetic implemen tation, later as a categorical phonological rule applying in increasing!
 - narrow morphosyntactic domains, until it eventually escapes phonological control altogether"

- Wave Theory (Schmidt 1872)
 - Gradual diffusion of a process from a center towards the periphery
 - Different synchronic statuses of the process
 - Center: systematic and categorical behavior ⇒ phonological process
 - Periphery: optional and gradual behavior ⇒ phonetic process
 - The life cycle of a phonological process (Bermúdez-Otero 2015)
 - Diachronically, ph processes climb up the grammar architecture
 - "a phonetic phenomenon that is at first exhaustively determined by extragrammatical factors [gets] embedded in the grammar of a language, first as a language-specific gradient process of phonetic implementation, later as a categorical phonological rule applying in increasingly narrow morphosyntactic domains, until it eventually escapes phonological control altogether"


- Wave Theory (Schmidt 1872)
 - Gradual diffusion of a process from a center towards the periphery
 - Different synchronic statuses of the process
 - Center: systematic and categorical behavior ⇒ phonological process
 - Periphery: optional and gradual behavior ⇒ phonetic process
- The life cycle of a phonological process (Bermúdez-Otero 2015)
 - Diachronically, ph processes climb up the grammar architecture

"a phonetic phenomenon that is at first exhaustively determined by extragrammatical factors [gets] embedded in the grammar of a language, first as a language-specific gradient process of phonetic implementation, later as a categorical phonological rule applying in increasingly narrow morphosyntactic domains, until it eventually escapes phonological control altogether"

- Wave Theory (Schmidt 1872)
 - Gradual diffusion of a process from a center towards the periphery
 - Different synchronic statuses of the process
 - **Center**: systematic and categorical behavior ⇒ **phonological** process
 - Periphery: optional and gradual behavior ⇒ phonetic process
- The life cycle of a phonological process (Bermúdez-Otero 2015)
 - Diachronically, ph processes climb up the grammar architecture

"a phonetic phenomenon that is at first exhaustively determined by extragrammatical factors [gets] embedded in the grammar of a language, first as a language-specific gradient process of phonetic implementation, later as a categorical phonological rule applying in increasingly narrow morphosyntactic domains, until it eventually escapes phonological control altogether"

The life cycle of phonological processes

- Phonologization: mechanical phonetic effect reanalysed as a cognitively controlled, language-specific, gradient process of phonetic implementation
- Stabilization: categorical phonological rule applying across the board at the phrase level

Wave theory, life cycle & epenthesis

- Peripheries display older stages of a process
 - Center: vowel epenthesis
 - Peripherv: vocoid intrusion
- Lunigiana dialects offer a great case study!


Wave theory, life cycle & epenthesis

- Peripheries display older stages of a process
 - Center: vowel epenthesis
 - Periphery: vocoid intrusion
 - Lunigiana dialects offer a great case study!

Wave theory, life cycle & epenthesis

- Peripheries display older stages of a process
 - Center: vowel epenthesis
 - Periphery: vocoid intrusion
- Lunigiana dialects offer a great case study!

Lunigiana

"no other region of the Peninsula can present the scholar with so many phonetic varieties in such a small area [where] the phonetic laws of a village differ [...] from the ones of nearby villages"

"the quantity of the cases of [a] persistence is inversely proportiona to the distance that divides the villages of this area from Tuscany and directly proportional to the distance [...] from Emilia"

"no other region of the Peninsula can present the scholar with so many phonetic varieties in such a small area [where] the phonetic laws of a village differ [...] from the ones of nearby villages"

"the quantity of the cases of [a] persistence is inversely proportional to the distance that divides the villages of this area from Tuscany, and directly proportional to the distance [...] from Emilia"

- VR effect decreases from North/Emilia to South/Tuscany
- No study of the reaction process: '

- VR effect decreases from North/Emilia to South/Tuscany
- No study of the reaction process: VI

Pontremolese

- North, closer to the Emilian border
- Stronger VR
- Vowel epenthesis

- South, closer to the Tuscan borde
- Milder VR
- Vocaid intrusion

Pontremolese

- North, closer to the Emilian border
- Stronger VR
- Vowel epenthesis

- South, closer to the Tuscan border
- Milder VR
- Vocoid intrusion

Pontremolese

- North, closer to the Emilian border
- Stronger VR
- Vowel epenthesis

- South, closer to the Tuscan border
- Milder VR
- Vocoid intrusion

Pontremolese

- North, closer to the Emilian border
- Stronger VR
- Vowel epenthesis

- South. closer to the Tuscan border
- Milder VR
- Vocoid intrusion

Diachrony

	No reduction	'magro	Pr.Rom
ii	Reduction I	'magr ə	
iii	Reduction II	$^{ ext{magr}}(\mathbf{a})$	
iv	Reduction III & Intrusion I (I)	$^{h} \mathrm{mag}(\mathbf{a}) \mathrm{r}$	Carr.
٧	Intrusion II (E)	'magər	
vi	Intrusion III (E)	'mag <mark>a</mark> r	Pontr.

Fieldwork

- Paroxitones and proparoxitones
- Clusters abiding by or violating SSG
- 42 carrier sentences with /CCØ/
 - /_ ||//_ # C-,V-//_ + V/
- 5 speakers per dialect
 - Age: 59-85
 - 9 male, 1 female
- Acoustic analysis
 - Formant normalization (Lobanov z-score)
 - PRAAT
 - Formant structure and duration (longer F1/F2 steady state)

Forms

	'σσ	(σ) ' $\sigma\sigma\sigma$
C1=C2		$selvatico$ 'wild $_{ m M.SG}$ '
		$\it tiepido$ 'lukewarm $_{ m M.SG}$ '
	<i>colpo</i> 'stroke _{M.SG} '	$stomaco$ 'stomach $_{ m M.SG}$ '
C1>C2	$forno$ 'oven $_{ m M.SG}$ '	\textit{manico} 'handle $_{ ext{M.SG}}$ '
	\textit{merlo} 'blackbird $_{ ext{M.SG}}$ '	
	<i>libro</i> 'book _{M.SG} '	giovane 'young _{M.SG} '
C1 <c2< td=""><td>\textit{magro} 'thin$_{ ext{M.SG}}$'</td><td><i>libero</i> 'free_{M.SG}'</td></c2<>	\textit{magro} 'thin $_{ ext{M.SG}}$ '	<i>libero</i> 'free _{M.SG} '
	<i>quattro</i> 'four'	\textit{tenero} 'tender $_{ ext{M.SG}}$ '
		asino 'donkey $_{\mathrm{M.SG}}$ '

Results

Results

SGG-abiding paroxitones

Pr.Rom.	Pontr.	Carr.
<i>colpo</i> 'stroke _{M.SG} '	[kurp]	[kolp]

- Pr.Rom. WF-o drops systematically
 - $M.SG \Rightarrow \emptyset$ in Pontr. and Carr.
- No 'SSG violation' & no 'repair

SGG-abiding paroxitones

Pr.Rom.	Pontr.	Carr.
colpo 'stroke _{M.SG} '	[kurp]	[kolp]

- Pr.Rom. WF-o drops systematically
 - M.SG $\Rightarrow \emptyset$ in Pontr. and Carr.
- No 'SSG violation' & no 'repair'

C1=C2 proparoxitones

Pr.Rom.	Pontr.	Carr.
$selvatico$ 'wild $_{ m M.SG}$ '	[ser'vadgø]	[səlˈvatəkə]
	[ser'vadg <mark>ə</mark>]	[səlˈvatək]
	[ser'vadg [•]]	[səlˈvatək]
		[səlˈvatk ^ə]
		[səlˈvatk]

Pontr.

- \blacksquare M.SG $\Rightarrow \emptyset$
- Insertion of a vocoid \neq E in WF position
- SSG sensitivity

Carı

- \blacksquare M.SG $\Rightarrow \varnothing$
- Optional vocoid insertion
- SSG insensitivity

C1=C2 proparoxitones

Pr.Rom.	Pontr.	Carr.
<i>selvatico</i> 'wild _{M.SG} '	[ser'vadgø]	[səlˈvat ^ə k ^ə]
	[ser'vadgə]	[səl'vatək]
	[ser'vadg [•]]	[səlˈvatək]
		[səl'vatk ^ə]
		[səl'vatk]

Pontr.

- \blacksquare M.SG $\Rightarrow \emptyset$
- Insertion of a vocoid \neq E in WF position
- SSG sensitivity

Carr.

- \blacksquare M.SG $\Rightarrow \emptyset$
- Optional vocoid insertion
- SSG insensitivity

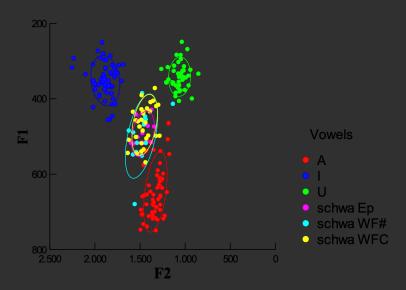
SGG-violating (pro)paroxitones

Pr.Rom.	Pontr.	Carr.
$\it libro$ 'book $_{ m M.SG}$ ' $\it libero$ 'free $_{ m M.SG}$ '	[ˈlibɐr]	['libər] [libər] [librə] [libr]

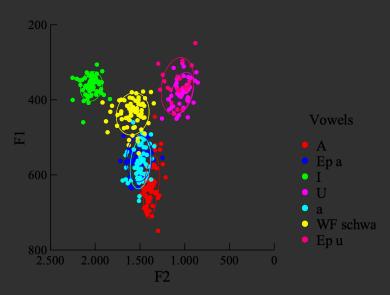
- Pontr.
 - \blacksquare M.SG $\Rightarrow \emptyset$
 - 'SSG violation' & 'repair'
 - E (systematic)
- Carr.
 - \blacksquare M.SG $\Rightarrow \varnothing$
 - 'SSG violation' & no 'repair
 - I (optional)

SGG-violating (pro)paroxitones

Pr.Rom.	Pontr.	Carr.
$libro$ 'book $_{ m M.SG}$ ' $libero$ 'free $_{ m M.SG}$ '	[ˈlibɐr]	[ˈlibər] [libər] [librə] [libr]


- Pontr.
 - \blacksquare M.SG $\Rightarrow \emptyset$
 - 'SSG violation' & 'repair'
 - E (systematic)
- Carr.
 - $M.SG \Rightarrow \emptyset$
 - 'SSG violation' & no 'repair'
 - I (optional)

Pontremolese E


Pr.Rom.	Pontr.
magro 'thin _{M.SG} '	[ˈmager]
${\it asino}$ 'donkey $_{ m M.SG}$ '	[ˈasʊŋ]

- **■ v** (/a/) before /r, I/
- \bullet σ (/u/) before [η] (/n/)

Carrarese I

Pontremolese E

I vs E (Hall 2011)

Intrusive vocoids

- Optional, variable duration, disappear at fast speech rates
- No markedness-repairing function
- By-product of consonantal gestures' timing
- No features & no N projection

Epenthetic vowels

- Independent on speech rate
- Markedness-repairing function
- Phonologically similar to lexical V
- Features & N projection

I vs E (Hall 2011)

Intrusive vocoids

- Optional, variable duration, disappear at fast speech rates
- No markedness-repairing function
- By-product of consonantal gestures' timing
- No features & no N projection

Epenthetic vowels

- Independent on speech rate
- Markedness-repairing function
- Phonologically similar to lexical V
- **■** Features & N projection

Explanandum: I-to-E

Initial stage - Carr. I

Final stage - Pontr. E

Analysis

Analysis

Ingredients

- Diachronic change as sequence of synchronic grammars
 - Interpretation of percepts drives change (Ohala 1981; Hamann 2009)
 - Production and perception grammars
- Life cycle of phonological processes
 - From extra-grammatical (I) to grammatical (E)
 - I: open transition (Bloomfield 1933), excrescent vowel (Levin 1987),
 by-product of the consonantal gesture phasing (Hall 2006)
 - E: phonological object (contentful nucleus
- Bidirectional modular grammar: BiPhon (Boersma 2011)
 - One grammar for speech production (lexicon-to-articulation) and perception (percept-to-lexicon)

Ingredients

- Diachronic change as sequence of synchronic grammars
 - Interpretation of percepts drives change (Ohala 1981; Hamann 2009)
 - Production and perception grammars
- Life cycle of phonological processes
 - From extra-grammatical (I) to grammatical (E)
 - I: open transition (Bloomfield 1933), excrescent vowel (Levin 1987), by-product of the consonantal gesture phasing (Hall 2006)
 - E: phonological object (contentful nucleus)
- Bidirectional modular grammar: BiPhon (Boersma 2011)
 - One grammar for speech production (lexicon-to-articulation) and perception (percept-to-lexicon)

Ingredients

- Diachronic change as sequence of synchronic grammars
 - Interpretation of percepts drives change (Ohala 1981; Hamann 2009)
 - Production and perception grammars
- Life cycle of phonological processes
 - From extra-grammatical (I) to grammatical (E)
 - I: open transition (Bloomfield 1933), excrescent vowel (Levin 1987), by-product of the consonantal gesture phasing (Hall 2006)
 - E: phonological object (contentful nucleus)
- Bidirectional modular grammar: **BiPhon** (Boersma 2011)
 - One grammar for speech production (lexicon-to-articulation) and perception (percept-to-lexicon)

BiPhon modular architecture

LEXICON	<morpheme></morpheme>
	‡
	Underlying form
Phonology	‡
	/Surface form/
	‡
	[[Auditory form]]
PHONETICS	‡
	[Articulatory form]

PHONETICS

Articulatory form

- "a sequence of gestures by the multiple articulatory muscles"
 - Non-linguistic motor system knowledge that can be resorted to for linguistic purposes

Auditory form

- "a sequence of events on auditory continua"
 - Pitch, noise, spectral peaks and valleys, silences, their durations

PHONETICS

Articulatory form

- "a sequence of gestures by the multiple articulatory muscles"
 - Non-linguistic motor system knowledge that can be resorted to for linguistic purposes

Auditory form

- "a sequence of events on auditory continua"
 - Pitch, noise, spectral peaks and valleys, silences, their durations ...

PHONOLOGY

Surface form

- Discrete representations of PH objects after operations applied
 - Elements (Backley 2011), O, N

Underlying form

Discrete representation of PH objects stored in the Lexicon

PHONOLOGY

Surface form

- Discrete representations of PH objects after operations applied
 - Elements (Backley 2011), O, N

Underlying form

■ Discrete representation of PH objects stored in the Lexicon

BiPhon modular architecture

	Underlying form	
PHONOLOGY	‡	faithfulness constraints
	/Surface form/	structural constraints
	‡	cue constraints
	[[Auditory form]]	
PHONETICS	‡	sensorimotor constraints
	[Articulatory form]	articulatory constraints

PHONETICS

Articulatory constraints

- Favouring minimum effort (Lindblom 1983)
 - \blacksquare Fast and/or casual speech = high-ranking of articulatory constraints

Sensorimotor constraints

- "how to articulate a given sound and [how] a certain articulatory gesture will sound like"
 - Fixed, universal, or speaker-specific relative ranking

PHONETICS

Articulatory constraints

- Favouring minimum effort (Lindblom 1983)
 - Fast and/or casual speech = high-ranking of articulatory constraints

Sensorimotor constraints

- "how to articulate a given sound and [how] a certain articulatory gesture will sound like"
 - Fixed, universal, or speaker-specific relative ranking

PHONETICS-PHONOLOGY

- "Knowledge of [the] relation between auditory form and phonological surface form"
- Learnt, arbitrary, and language-specific
 - Substance-free phonology

PHONETICS-PHONOLOGY

- "Knowledge of [the] relation between auditory form and phonological surface form"
- Learnt, arbitrary, and language-specific
 - Substance-free phonology

PHONOLOGY

```
 \begin{array}{cccc} |\mathsf{Underlying\ form}| & & & \\ & \updownarrow & \leftarrow & \mathsf{Faithfulness\ constraints} \\ /\mathsf{Surface\ form}/ & \leftarrow & \mathsf{Structural\ constraints} \end{array}
```

Structural constraints (\sim markedness)

Evaluate phonological surface forms

Faithfulness constraints

■ Evaluate UF-SF mapping

PHONETICS

Articulatory constraints

■ CoArt adjacent articulations must overlap

Sensorimotor constraints

[[ə Hz]] [ə]

an acoustic ə-like formant structure is produced by a ə articulatory configuration

PHONETICS

Articulatory constraints

■ CoArt adjacent articulations must overlap

Sensorimotor constraints

- [[ə Hz]] [ə] an acoustic ə-like formant structure is produced by a ə articulatory configuration
- [[x ms]] [x ms] an acoustic structure of a given duration is produced by a gesture of the same duration
 - [[]] as normalized values

PHONETICS

Articulatory constraints

■ CoArt adjacent articulations must overlap

Sensorimotor constraints

- [[\ni Hz]] [\ni] an acoustic \ni -like formant structure is produced by a \ni articulatory configuration
- [[x ms]] [x ms] an acoustic structure of a given duration is produced by a gesture of the same duration
- []] as normalized values

PHONETICS-PHONOLOGY

- ullet /A/ [[a Hz]] an element A corresponds to a [a]-like formant structure
- ullet /U/ [[u Hz]] an element U corresponds to a [u]-like formant structure
 - Nuc [[ə Hz]] a nucleus corresponds to a [ə]-like formant structure
 - /•/ [[• ms]] a segment corresponds to a short acoustic periodi structure
- Against silent (production) and intrusive (perception) segments

PHONETICS-PHONOLOGY

- lacksquare /A/ [[a Hz]] an element A corresponds to a [a]-like formant structure
- $lackbox{ } /U/\left[\left[u \; \text{Hz}
 ight]
 ight]$ an element U corresponds to a $\left[u\right]$ -like formant structure
- Nuc [[θ Hz]] a nucleus corresponds to a [θ]-like formant structure
 - /•/ [[• ms]] a segment corresponds to a short acoustic periodic structure
- Against silent (production) and intrusive (perception) segments

PHONETICS-PHONOLOGY

- lacksquare /A/ [[a Hz]] an element A corresponds to a [a]-like formant structure
- $lackbox{ } /U/\left[\left[u \; Hz
 ight]
 ight]$ an element U corresponds to a $\left[u\right]$ -like formant structure
- Nuc [[ə Hz]] a nucleus corresponds to a [ə]-like formant structure
- /•/ [[• ms]] a segment corresponds to a *short* acoustic periodic structure
- Against silent (production) and intrusive (perception) segments

PHONETICS-PHONOLOGY

- lacksquare /A/ [[a Hz]] an element A corresponds to a [a]-like formant structure
- NUC [[ϑ Hz]] a nucleus corresponds to a [ϑ]-like formant structure
- /•/ [[• ms]] a segment corresponds to a *short* acoustic periodic structure
- Against silent (production) and intrusive (perception) segments

Specific constraints

PHONOLOGY

Structural constraints

■ SSG between any member of a σ and the σ 's peak, a sonority rise or plateau must occur (*TR)

■ AGREE two adjacent segments must be melodically similar (spreading)

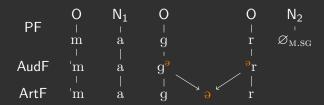
Faithfulness constraints

■ DEP each SF segment corresponds to a UF segment (no epenthesis)

Explanandum: I-to-E

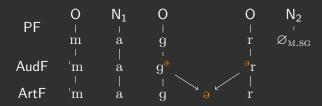
Initial stage - Carr. I

Final stage - Pontr. E

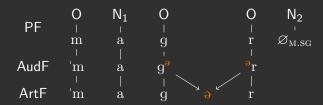

Initial stage

Initial stage (Carr.)

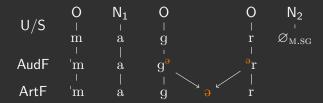
Initial stage - Production, fast/casual speech (Carr.)


- No I
 - ullet = $/\mathrm{g}/\mathrm{s}$ release & $/\mathrm{r}/\mathrm{s}$ formant structure

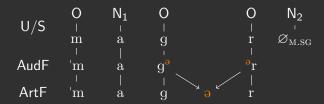
Initial stage - Production, slow speech (Carr.)


- Low degree of overlap of two consonantal gestures (Hall 2006)
 - "integration of a short vocal tract opening period occurring between the two consecutive consonants" (Recasens 2014)
- Expression of the place info of the preceding C (Hall 2006)
 - Enhancement of the first 'vocalic element' of /r/ (Savu 2013
- Acoustically similar to a short a
 - F2 value conditioned by flanking consonants

Initial stage - Production, slow speech (Carr.)



- Low degree of overlap of two consonantal gestures (Hall 2006)
 - "integration of a short vocal tract opening period occurring between the two consecutive consonants" (Recasens 2014)
- Expression of the place info of the preceding C (Hall 2006)
 - Enhancement of the first 'vocalic element' of /r/ (Savu 2013)
- Acoustically similar to a short ⊕
 - F2 value conditioned by flanking consonants


Initial stage - Production, slow speech (Carr.)

- Low degree of overlap of two consonantal gestures (Hall 2006)
 - "integration of a short vocal tract opening period occurring between the two consecutive consonants" (Recasens 2014)
- Expression of the place info of the preceding C (Hall 2006)
 - Enhancement of the first 'vocalic element' of /r/ (Savu 2013)
- Acoustically similar to a short *a*
 - F2 value conditioned by flanking consonants

- The articulatory configuration corresponds to no auditory target
 - Violation of
 - [[ə Hz]] [ə Hz]
 - [[x ms]] [x ms]
 - No violation of
 - Nuc [[ə Hz]]
 - /•/ [[X ms]]

- /'magr/ [['magr]] is OK \Rightarrow no 'repair' required
 - SSG violation
 - No Dep violation

AudF m a g o

- The auditory input corresponds to no phonological object
 - Forms such as ['magər] are considered monosyllabic
 - Poetry: verse metrical structure
 - Transcription: never transcribed

- The auditory input corresponds to no phonological object
 - Violation of
 - Nuc [[ə Hz]]
 - /•/ [[x ms]]
 - No violation of
 - Dep

Crucial constraint ranking

$$\mathrm{Dep} >> / \bullet / [[x \ \mathsf{ms}]], \ \mathrm{Nuc} [[\partial \ \mathsf{Hz}]]$$

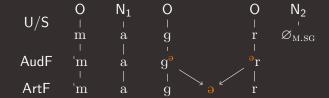
- The auditory input corresponds to no phonological object
 - Violation of
 - Nuc [[ə Hz]]
 - /•/ [[X ms]]
 - No violation of
 - Dep

Crucial constraint ranking

$$DEP >> / \bullet / [[x ms]], NUC [[a Hz]]$$

Intermediate stage I - Reinterpretation

- Importance of perception/the listener
 - "[The] insertion process [resulting from] the integration of a short vocal tract opening period occurring between the two consecutive consonants [can be interpreted] as an independent vowel by the listeners" (Recasens 2014)
 - listener-initiated sound change [...]. If intrusive vowels is likely a case of acoustically too similar to segmental vowels, speakers may reanalyze them as segments." (Hall 2006)
- Suppose that, for some sociolinguistic reason, the production of [spreads...


Intermediate stage I - Reinterpretation

- Importance of perception/the listener
 - "[The] insertion process [resulting from] the integration of a short vocal tract opening period occurring between the two consecutive consonants [can be interpreted] as an independent vowel by the listeners" (Recasens 2014)
 - "[T]he 'segmentalisation' [...] of intrusive vowels is likely a case of listener-initiated sound change [...]. If intrusive vowels become acoustically too similar to segmental vowels, speakers may reanalyze them as segments." (Hall 2006)
- Suppose that, for some sociolinguistic reason, the production of spreads...

Intermediate stage I - Reinterpretation

- Importance of perception/the listener
 - "[The] insertion process [resulting from] the integration of a short vocal tract opening period occurring between the two consecutive consonants [can be interpreted] as an independent vowel by the listeners" (Recasens 2014)
 - "[T]he 'segmentalisation' [...] of intrusive vowels is likely a case of listener-initiated sound change [...]. If intrusive vowels become acoustically too similar to segmental vowels, speakers may reanalyze them as segments." (Hall 2006)
- Suppose that, for some sociolinguistic reason, the production of [ə] spreads...

Production

Perception

- The auditory input corresponds to a phonological object
 - [[ə Hz]] is mapped on /ə,
 - Promotion of /•/ [[X ms]] over DEP
- ullet [['magər]] \sim [['magri]]/[['magra]]/[['magre]
 - \blacksquare /ə/ \sim Ø as synchronic phonological proces
 - Promotion of SSG over DEP

- The auditory input corresponds to a phonological object
 - [[ə Hz]] is mapped on /ə/
 - Promotion of /•/ [[x ms]] over DEP
- $lacksquare [[ext{'magari}]]/[[ext{'magra}]]/[[ext{'magre}]]$
 - $| /_{\Theta} / \sim \varnothing$ as synchronic phonological proces
 - To the state of th
 - Promotion of SSG over DEP

- The auditory input corresponds to a phonological object
 - [[ə Hz]] is mapped on /ə/
 - Promotion of /•/ [[X ms]] over DEP
- $[[mager]] \sim [[magri]]/[[magra]]/[[magre]]$
 - \blacksquare /ə/ \sim Ø as synchronic phonological process
 - Promotion of SSG over DEP

- $| /_{\Theta} / \sim \varnothing$ as synchronic phonological process: two options
 - Option I
 - Epenthesis of empty N
 - [[ə]] = pronunciation of an empty N (Harris 1994; GP)
 - "insertion of a maximally unspecified segment to satisfy FAITH' (Uffmann WoE)
 - Option I
 - Epenthesis of N/a
 - Donceto (Repetti & Cardinaletti 2008
 - Insertion of the least marked vocalic segment

- $| /_{\Theta} / \sim \varnothing$ as synchronic phonological process: two options
 - Option I
 - Epenthesis of empty N
 - [[ə]] = pronunciation of an empty N (Harris 1994; GP)

Ageing nuclei

- "insertion of a maximally unspecified segment to satisfy FAITH" (Uffmann WoE)
- Option I
 - Epenthesis of N/a
 - Donceto (Repetti & Cardinaletti 2008
 - Insertion of the least marked vocalic segment

- $| /_{\Theta} / \sim \varnothing$ as synchronic phonological process: two options
 - Option I
 - Epenthesis of empty N
 - [[ə]] = pronunciation of an empty N (Harris 1994; GP)
 - "insertion of a maximally unspecified segment to satisfy FAITH" (Uffmann WoE)
 - Option II
 - Epenthesis of N_{/ə/}
 - Donceto (Repetti & Cardinaletti 2008)
 - Insertion of the least marked vocalic segment

Intermediate stage II - Production, \ominus -coloring

PF	0	N_1	O	N _E	O	N_2
	m	à	ġ		r	Ø
AudF	$^{\prime}\mathrm{m}$	\mathbf{a}	g		r	

Intermediate stage II - Production, θ -coloring

- Coarticulation (Recasens 2014: 52)
 - \blacksquare [[ər]] \rightarrow [ar]
 - "Anticipatory tongue dorsum lowering and backing for [r] [and [l]]
 - lacksquare [[əŋ]] ightarrow [uŋ]
 - "[anticipatory] tongue postdorsum [raising] toward the velar zone"
- Variable phonetic process
 - Promotion of CoArt over [[ə Hz]] [ə]

Intermediate stage II - Production, θ -coloring

- Coarticulation (Recasens 2014: 52)
 - $\quad \blacksquare \ [[\ni r]] \to [\mathrm{ar}]$
 - \blacksquare "Anticipatory tongue dorsum lowering and backing for [r] [and [l]] "
 - $\blacksquare \ [[e\eta]] \to [u\eta]$
 - "[anticipatory] tongue postdorsum [raising] toward the velar zone"
- Variable phonetic process
 - Promotion of CoArt over [[ə Hz]] [ə]

Intermediate stage II - Production, \(\theta\)-coloring

- Coarticulation (Recasens 2014: 52)
 - $\quad \blacksquare \ [[\exists r]] \to [\mathrm{ar}]$
 - \blacksquare "Anticipatory tongue dorsum lowering and backing for [r] [and [l]]"
 - $\blacksquare \ [[e\eta]] \to [u\eta]$
 - "[anticipatory] tongue postdorsum [raising] toward the velar zone"
- Variable phonetic process
 - Promotion of CoArt over [[ə Hz]] [ə]

Intermediate stage II - Reinterpretation

Production

Perception

Coarticulation as assimilation

- Coarticulation as assimilation
 - $| /r/ = |A|; /\eta/ = |L.U|$ (Element Theory; Backley 2011)

- Coarticulation as assimilation
 - /r/=|A|; $/\eta/=|L.U|$ (Element Theory; Backley 2011)
 - \blacksquare |A|, |U| spread to N_E
 - FAITH-triggered process (Uffmann vs Rubin & Kaplan WoE)
 - Spreading over feature-insertion
 - lacksquare CoArt's effect ightarrow Agree's effect

- Coarticulation as assimilation
 - $| r/ = |A|; /\eta/ = |L.U|$ (Element Theory; Backley 2011)
 - \blacksquare |A|, |U| spread to N_E
 - FAITH-triggered process (Uffmann vs Rubin & Kaplan WoE)
 - Spreading over feature-insertion
 - \blacksquare CoArt's effect \rightarrow Agree's effect

UR

■ Epenthesis of N_E: SSG >> DEF

■ Spreading of A: SSG >> DEP, AGREE >> NUC [[θ]]

UR

■ Epenthesis of N_E: SSG >> DEP

■ Spreading of A: SSG >> DEP, AGREE >> NUC [[ə]]

UR

■ Epenthesis of N_E: SSG >> DEP

■ Spreading of A: SSG >> DEP, AGREE >> NUC [[ə]]

Final stage - Production (Pontr.)

■ Epenthesis of N_F: SSG >> DEF

■ Spreading of \cup : SSG >> DEP, AGREE >> NUC [[θ]]

Final stage - Production (Pontr.)

■ Epenthesis of N_F: SSG >> DEP

■ Spreading of U: SSG >> DEP, AGREE >> NUC [[ə]]

Final stage - Production (Pontr.)

■ Epenthesis of N_F: SSG >> DEP

■ Spreading of U: SSG >> DEP, AGREE >> NUC [[ə]]

Conclusion

Conclusion

- I-to-E phonologization os due to learners reinterpreting low-level phonetic processes as phonological
 - Integration of T's release and R's vocalic content \rightarrow presence of N
 - Coarticulation as assimilation (∂-coloring)
- BiPhon allows for an explicit modeling of
 - the necessary perception grammars
 - the interaction between phonetics and phonology
 - the I-E diatopic variation/change

- I-to-E phonologization os due to learners reinterpreting low-level phonetic processes as phonological
 - Integration of T's release and R's vocalic content \rightarrow presence of N
 - Coarticulation as assimilation (∂-coloring)
- BiPhon allows for an explicit modeling of
 - the necessary perception grammars
 - the interaction between phonetics and phonology
 - the I-E diatopic variation/change

Discussion

Discussion

- Representation
 - Substance-free, acquired, language-specific

- Representation
 - Substance-free, acquired, language-specific
- Computation
 - Underlying-to-surface form mapping
 - Acquired, language-specific
 - Surface-to-auditory form mapping
 - Acquired, language-specific
 - Influenced by extra-grammatical factors such as sociolinguistic indexe
 - Auditory-to-articulatory form mapping
 - Acquired, speaker-specific
 - Influenced by extra-grammatical factors such as speech rate

- Representation
 - Substance-free, acquired, language-specific
- Computation
 - Underlying-to-surface form mapping
 - Acquired, language-specific

- Representation
 - Substance-free, acquired, language-specific
- Computation
 - Underlying-to-surface form mapping
 - Acquired, language-specific
 - Surface-to-auditory form mapping
 - Acquired, language-specific
 - Influenced by extra-grammatical factors such as sociolinguistic indexes

- Representation
 - Substance-free, acquired, language-specific
- Computation
 - Underlying-to-surface form mapping
 - Acquired, language-specific
 - Surface-to-auditory form mapping
 - Acquired, language-specific
 - Influenced by extra-grammatical factors such as sociolinguistic indexes
 - Auditory-to-articulatory form mapping
 - Acquired, speaker-specific
 - Influenced by extra-grammatical factors such as speech rate

- Languages constantly change also at the intra-speaker level (Harrington et al. 2000, Sankoff & Blondeau 2007, Kwon 2014, Tamminga et al. 2016, MacKenzie 2019)
 - "Peer influence during adolescence exerts an especially strong effect on linguistic patterns" (Foulkes & Vihman 2013)
 - "Adults' abstract phonological systems [...] are different from what they were in childhood or at puberty. Change is dramatic in childhood, but it does not stop there" (Sankoff & Blondeau 2007: 584)
 - L1 attrition in heritage languages (Tordini et al 2018)

- Our synchronic models should be granted the possibility to change also within one and the same speaker
- Series of different grammars with no constraint violation
 - However, if (hard) constraints are universal, we cannot just assume that once they are no more necessary they simply vanish away
- One changing grammar
 - The constraints a speaker complied with at a specific stage, at a subsequent stage could be no more complied with
 - Depending on the stage the grammar of the speaker reached constraints can be violated
- One and the same computational procedure > variation in the representation (à la Borer & Chomsky)

- Our synchronic models should be granted the possibility to change also within one and the same speaker
- Series of different grammars with no constraint violation
 - However, if (hard) constraints are universal, we cannot just assume that once they are no more necessary they simply vanish away

- Our synchronic models should be granted the possibility to change also within one and the same speaker
- Series of different grammars with no constraint violation
 - However, if (hard) constraints are universal, we cannot just assume that once they are no more necessary they simply vanish away
- One changing grammar
 - The constraints a speaker complied with at a specific stage, at a subsequent stage could be no more complied with
 - Depending on the stage the grammar of the speaker reached, constraints can be violated

- Our synchronic models should be granted the possibility to change also within one and the same speaker
- Series of different grammars with no constraint violation
 - However, if (hard) constraints are universal, we cannot just assume that once they are no more necessary they simply vanish away
- One changing grammar
 - The constraints a speaker complied with at a specific stage, at a subsequent stage could be no more complied with
 - Depending on the stage the grammar of the speaker reached, constraints can be violated
- One and the same computational procedure > variation in the representation (à la Borer & Chomsky)

Representational variation

- Variation resides in the phonological representation side of LI
 - Computation follows from representation
 - Ideally exceptionless > no principles/hard constraints parametrization
 - Refinement of empty categories (Cavirani & van Oostendorp 2017, 2019; Cavirani 2022)

Representational variation

- Too static and possibly simplistic/unrealistic
 - Changes in lexical representation are the endpoint of a grammaticalization process starting from the bottom of language architecture
 - ...climbing up through the phonetic-phonology interface via the cue constraints
 - ...which interact with phonological constraints structural constraints
 - Given that an individual's phonology varies through time, the possibility for them to be reranked must be assumed

Step 1: Proto-Romance undershoot - production

- Constraints
 - *ART
 - [[x Hz]] [x]
 - [[x ms]] [x ms]

- minimize gestures stiffness and duration
- an acoustic x-like formant structure is produced by an articulatory configuration x
- an acoustic structure of a given duration is produced by a gesture of the same duration

- Crucial ranking
 - *ART >> sensorimotor constraints

Vowel reduction

O k	'N A	O p	N• AU		*Art	[[ə Hz]] [ə]	[[u Hz]] [u]	[[x ms]] [x ms]
a)	0	'N	0	NΦ				
	1	1	1	1				
	i	A	i	AU				
139"	i	i.	i	1	****('N)		*	*('N)
	[[k	a:	p	o]]	*(N)			*(N)
	[k	a·	p	٥]				
b)	О	'N	О	NΦ				
	1	$ \mathbf{A} $	1	AU	w		L	L
			-		****!*('N)			
	[[k	a:	p	o]]	*!**(N)			
	[k	a:	р	o]				
c)	O	'N	O	N_{Φ}				
							_	
		$ \mathbf{A} $		AU	W	W	L	
	-				****('N)	*		*('N)
	[[k	a:	p	o]]	*!*(N)			*(N)
	[k	a·	p	u]				

Step 1: Proto-Romance perception

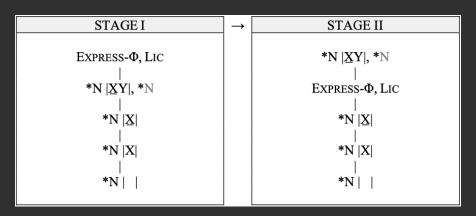

- Constraints
 - EXPRESS-M.SG M.SG elements must be present in the phonological representation (M.SG = φ)
- Crucial ranking
 - Express- $\varphi >> *N/Str/$

Figure Proto-Romance perception

Step 2: Proto-Romance perception (hypoarticulation)

- Speaker undershoot as hypoarticulation
 - "Part of planned speech behaviour rather than an accidental by-product of vocal-organ inertia" (Harris 2005: 132)
- Constraints
 - 'Unpacked' *N/STR/
- Crucial ranking
 - Promotion of *N/XY/
 - \bullet *N/XY/ >> Express- ϕ
- M.SG restructuring: $\langle AU/ \rangle /A/$

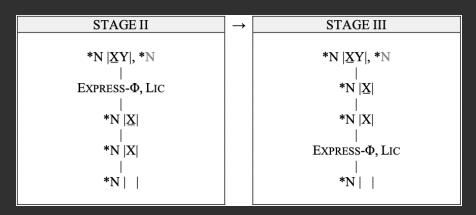
Proto-Romance perception (hypoarticulation)

Grammar change

Step 3: Another round of undershoot - production

- Crucial ranking
 - Promotion of *ART
 - *ART >> sensorimotor constraints

O k	'N A	O p	N⊕ A		*Art	[[x ms]] [x ms]
a)	О	'N	О	NΦ		
				1		
		$ \mathbf{A} $		A	*****	
19*			- 1	1	****('N) *(N)	*('N) *(N)
	[[k	a:	p	ə]]	(2.)	
				- 1		
	[k	a·	p	٥]		
b)	OR	'NR	OR	N_{Φ}		
		1	- 1	1		
		$ \mathbf{A} $		A	W	L
		-		1	****!*('N)	
	[[k	a:	p	ə]]	**(N)	
				1		
	[k	a:	p	ə]		


Undershoot

Step 4: Perception (hypoarticulation)

- Crucial ranking
 - Promotion of *N/X/
 - \blacksquare *N/X/ >> Express- ϕ
- Speaker undershoot as hypoarticulation
- M.SG restructuring: /A/>/
- *N/X/ forces the violation of (all the) LIC constraint(s)

[[k	a·	p	٥]]		*N X	Express-Ф	Lic	*N
a)	О	'N	0	No.				
				- 1				
130**		$ \mathbf{A} $				*	*	*
	[[k	a·	p	٥]]				
b)	O	'N	O	N₀				
	1	-		1	w	L	L	L
	1	$ \mathbf{A} $	-	A				
		1		- 1	*!			
	[[k	a·	p	٥]]				

Perception (hypoarticulation)

Grammar change