Equating by quantifying over kinds: Zo...als equatives in Dutch
 Northeast Linguistic Society 53, 12-14 Jan 2023, University of Göttingen, Germany

Lena Heynen \& Jianrong Yu

Center for Research in Syntax, Semantics, and Phonology (CRISSP), KU Leuven lena.heynen@kuleuven. be, jianrong. yu@kuleuven. be

The data: Dutch zo...als equatives

- Equative constructions in Dutch involve using the morpheme zo, combined wit
marker (SM) als.
- This applies to both adjectival and verbal equatives; the only difference concerns the linear position of the standard als-clause (Corver 2018).
Adjectival equatives
(1) Jan is zo *<als Sue> groot <als Sue> John is zo ALS Sue tall ALS Sue 'John is as tall as Sue.'

Verbal equatives

(2) Nadine had zo <als Sigrid> gerend <als Sigrid> Nadine has zo ALS Sigrid ran ALS Sigrid 'Nadine ran as Sigrid ran.'

Proform zo

- The morpheme $z o$ is a cross-categorial proform, replacing either degrees with adjectives or manners with verbs in non-equative contexts.
(3) Jan is 1.70 m groot. Jane is ook $z o$ groot John is 1.70 m tall Jane is also zo tall
John is 1.70 m tall and Jane is 1.70 m tall to \#'John is 1.70 m tall, and Jane is also tall at 1.75 m . \#'John is 1.70 m tall, and Jane is also tall at $1.75 \mathrm{~m} .{ }^{\text {(proform for degrees, not evaluative) }}$
(4) Jan gedroeg zich erg goed vandaag. Jane gedroeg John behave himself very bad today Jane behave zich ook zo.
'John behaved badly today and Jane behaved so too.
Zo...als equatives track degrees or manners like zo
- Zo...als equatives produce only degree readings or manner readings with adjectives and verbs just like zo in non-equatives. $\frac{(5-a) \text { is infelicitous as a continuation for }[1) \text {. This entails that }(1)}{\text { must equate degrees. }(6-b) \text { is infelicitous as a continuation for (2). }}$ This means (2) must equate only manners.
(5) Continuations for (1)
a. \#Jan is 1 m 85 en Sue 1 m 80 .

John is 1 m 85 and Sue 1 m 80
'John's height is 1 m 85 and Sue's is 1 m 80 .' (evaluative)
b. Jan is 1 m 68 en Sue ook

John is 1 m 68 and Sue too
'John's height is 1 m 68 and Sue is 1 m 68 too.'
(6)

Continuations for (2)
Namelijk in cirkels
namely in circles
'Namely in circles.'
b. \#Namelijk 2 km per uur namely 2 km per hou

The analysis I: Quantifying over kinds
gical primitive in
the grammar (semantic type π).

- States and events, the denotations of adjectives and events re-
spectively, are taken to instantiate kinds.
- States and events instantiating kinds return degrees and man
ners respectively as distinguished properties.
- Als is an equative quantifier relating two sets of kinds in a sub
set relation.

The individual pieces

- Zo compositionally introduces a kind variable k, producing a type neutral property. The variable o ranges over either states s or e.
- Als is an equative quantifier over kinds, taking two sets of kinds K as arguments and asserting the first set is a subset of the second.
(7) $\llbracket z o \rrbracket: \lambda \mathrm{k}_{\pi} \cdot \lambda_{\mathrm{o}} . \cup_{\mathrm{k}(\mathrm{o})}$
(8) $\llbracket a l \rrbracket \rrbracket: \lambda \mathrm{K}_{\pi t} \cdot \lambda \mathrm{~K}^{\prime} \pi t \cdot\{\mathrm{k}: \mathrm{K}(\mathrm{k})=1\} \subseteq\left\{\mathrm{k}^{\prime}: \mathrm{K}^{\prime}\left(\mathrm{k}^{\prime}\right)=1\right\}$

Composition: Adjectival equatives

- Zo is a functional head in the extended adjectival projection. It combines with a kind free variable and then combines with an in the matrix and standard clauses.
- The free variable is obligatorily abstracted over at the propositional level, assuming the subject of the AP is introduced low, fol lowed by Existential Closure of the state variable.
-The als-clause standard only appears to be obligatorily 'extraposed' with adjectival equatives; it is base-generated in its surface position (Corver 2018).

The analysis II: Quantifying over kinds Composition: Verbal equatives

- In verbal equatives, $z o$ takes the als-clause as its complement in the matrix clause. It can appear in-situ following $z 0$, or be extra posed to the right periphery due to (optionally) overt rightward QUANTIFIER RAISING
and Pancheva 2004). (11)

(12)

Supporting evidence

- The analysis captures the parallels between the proform use of $z o$ and its use in constructing equatives (e.g., Anderson and Morzy cki 2015).
It also captures the distribution of degree versus manner readings in equa
ners.
- The presence of an equative quantifier predicts scope-ambiguitie with other scope-taking elements, such as with a matrix moda verb (Heim 2000, 2006).
This is the case even with verbal equatives equating manners (Ho haus and Zimmermann 2021, cf. Rett 2013).
(13) Context: A foreign colleague can spend their research funds on equip ment, sooks, and c.
${ }_{1 \mathrm{~K} \text { mag minn beurs exact } z o<a l s} \mathrm{jij}>$ gebruiken <als $\mathrm{jij}>$
may my funding exactly zo ALS you use ALS y
may spend my funds in exactly the same way as you.

4) Mare ik mag ze ook gebruiken om sprekers uit te nodigen.
but I may her also use $\begin{aligned} & \text { to } \\ & \text { 'But I may also spend it on inviting speakers.' }\end{aligned} \quad \begin{aligned} & \text { PTT PRT invite } \\ & \text { Modal }\end{aligned}$ zo...als in (13)

(15) En voor niets anders!
and for nothing else

in $w\} l$, i.e, the manners colleague uses her funds is equal to all possible

Morpho-semantic variation in Germanic
PMs correlating with degree readings: English

- Haspelmath and Buchholz (1998) suggest that verbal equatives typically do not have PMs while adjectival equatives do.
- This correlates with the lack of degree readings in verbal equa tives. In English, degree readings are impossible even with, e.g.
degree achievement verbs in (16) (Rett 2013).
(16) John (*as) cooled the pie as he did the lasagna, \# namel to 30 degrees / namely by leaving out on the window sill.
- Rett analyzes the English PM 'as' as an equative degree quanti fier. English verbal equatives lack PMs and involve PREDICAT MODIfication between two sets of manners.
Dutch verbal equatives are still marked with PM zo, even though degree readings are impossible.
(17) We hebben de pizza (net) $z o$ afgekoeld als de lasagne we have the pizza just zo cooled.down ALS the lasagna
We cooled down the pizza like the lasagna.'
(18) Namelijk door te blazen.
namely by to blow
'Namely by blowing.'
(19) $\begin{gathered}\text { \#Namelijk tot } 21 \text { graden. } \\ \text { namely until } 21 \text { degrees }\end{gathered}$
- Verbal equatives also exhibit scope ambiguity in (13) (15), which is not predicted by a Predicate Modification analysis.
PMs with ambiguity: German
German is similar to Dutch, it uses a proform so, combined with - German is similar to Dutch; it uses a proform so, combined wi
(20) $\begin{aligned} & \text { Ich bin so groß } \\ & \text { I am sotall } \\ & \text { I } \\ & \text { am to tall }\end{aligned}$
(22) $\begin{aligned} & \text { so getanzt } \\ & \text { so danced }\end{aligned}$
am this tall.'
(21) $\begin{aligned} & \text { Ich bin so groß wie Peter. } \\ & \text { I } \\ & \text { Im so tall } \\ & \text { WIE Peter }\end{aligned}$ ${ }^{1}$ I am as atal as Peter.'
(23) John hat so wie Maria getanzt. danced
'John da
did. anced
lon danced the way Mary
di.'
- Hohaus and Zimmermann (2021) show that degree readings are possible with, e.g., DAs, in (24)-(26).
This motivates an analysis where the PM so is type-neutral, quan tifying over either degrees or manners.
(24) Wir haben die pizza so abgekühlt wie die lasagn. we have the pizza so cooled WIE the lasagn 'We cooled the pizza as we cooled the lasagne.'

(25) Nämlich durch Pusten. (26) Nämlich auf 21 grad | $\begin{array}{l}\text { namely through blow } \\ \text { Namely } \\ \text { on it.' }\end{array}$ | $\begin{array}{c}\text { namely to } 21 \text { deg } \\ \text { raumtemperatur. } \\ \text { room.temperature }\end{array}$ |
| :--- | :--- |

References

room.temperature
Namely to 21 degres
\qquad
f. $\llbracket 1]]:\left\{\mathrm{k}: \exists \mathrm{Js}\left[\operatorname{TALL}(\mathrm{s}, \mathrm{s} u()) \cup_{\mathrm{k}}(\mathrm{s})\right]=1\right\} \subseteq\left\{\mathrm{k}^{\prime}: \exists \mathrm{s}^{\prime}[\operatorname{TALL}(\mathrm{s}\right.$, $\left.\left.j a n) \wedge \cup^{\prime}\left(s^{\prime}\right)\right]=1\right\}$
set of the set of state kin Joight instantiates is a sub (i.e., degree of tallness)'

