Equating by quantifying over kinds

Zo...als equatives in Dutch and beyond

Jianrong Yu^{1} Lena Heynen ${ }^{1}$
${ }^{1}$ Center for Research in Syntax, Semantics, and Phonology, KU Leuven jianrong.yu@kuleuven.be, lena.heynen@kuleuven.be
Linguistic Society of America 97th Annual Meeting 5-8 January 2023, Denver CO
Semantics, and Phonology

Introduction

- We provide a compositional syntax-semantics for equatives in (Belgian) Dutch, which involve two morphosyntactic ingredients: $z o$ and als.
- Descriptively, zo seems to be a parameter marker (PM) marking what is being measured, while als is a standard marker (SM) marking the standard of comparison.
(1) John is as tall as Sue (is).
comparee copula PM parameter SM standard (copula)
(Haspelmath and Buchholz, 1998)
(2) Jan is zo groot als Sue.
comparee copula PM parameter SM standard

๑の
$2 / 56$

Introduction

- We provide a compositional syntax-semantics for equatives in (Belgian) Dutch, which involve two morphosyntactic ingredients: $z o$ and als.
- Descriptively, zo seems to be a parameter marker (PM) marking what is being measured, while als is a standard marker (SM) marking the standard of comparison.

(1) John is as tall | as Sue |
| :--- |
| comparee copula PM parameter SM standard (copula) |

(2) (Haspelmath and Buchholz, 1998)

Jan \quad is
comparee copula PM parameter SM standard

Evidence
Variation

Introduction

- We provide a compositional syntax-semantics for equatives in (Belgian) Dutch, which involve two morphosyntactic ingredients: zo and als.
- Descriptively, zo seems to be a parameter marker (PM) marking what is being measured, while als is a standard marker (SM) marking the standard of comparison.

Evidence
Variation

Introduction

- We provide a compositional syntax-semantics for equatives in (Belgian) Dutch, which involve two morphosyntactic ingredients: $z o$ and als.
- Descriptively, zo seems to be a parameter marker (PM) marking what is being measured, while als is a standard marker (SM) marking the standard of comparison.
(1) John is as tall as Sue (is). comparee copula PM parameter SM standard (copula)
(Haspelmath and Buchholz, 1998)
comparee copula PM parameter SM standard
- We provide a compositional syntax-semantics for equatives in (Belgian) Dutch, which involve two morphosyntactic ingredients: $z o$ and als.
- Descriptively, zo seems to be a parameter marker (PM) marking what is being measured, while als is a standard marker (SM) marking the standard of comparison.
(1) John is as tall as Sue (is). comparee copula PM parameter SM standard (copula)
(Haspelmath and Buchholz, 1998)
(2) Jan is zo groot als Sue. comparee copula PM parameter SM standard

Introduction

- When the parameter is non-adjectival and verbal, Haspelmath and Buchholz (1998) observe in a typological survey that languages typically use the same SM as with adjectival equatives but lack a PM.
(3) John (*as) ran as Mary ran/did.
comparee PM parameter SM standard parameter
- Rett (2013) observes that the lack of a PM correlates with interpretive differences: (3) only has a manner reading and not a degree reading.
- (3) can only refer to John running in the same way Mary did, not the same distance or at the same speed cf. (1) where John and Sue are of the same height.

Introduction

- When the parameter is non-adjectival and verbal, Haspelmath and Buchholz (1998) observe in a typological survey that languages typically use the same SM as with adjectival equatives but lack a PM.

| (3) John $\quad\left({ }^{*} a s\right)$ ran as Mary \quad ran/did. | |
| :--- | :--- | :--- |
| comparee $\mathbf{P M}$ | parameter SM standard parameter |

Rett (2013) observes that the lack of a PM correlates with interpretive differences: (3) only has a manner reading and not a degree reading.

- (3) can only refer to John running in the same way Mary did, not the same distance or at the same speed cf. (1) where John and Sue are of the same height.

Evidence
Variation

- When the parameter is non-adjectival and verbal, Haspelmath and Buchholz (1998) observe in a typological survey that languages typically use the same SM as with adjectival equatives but lack a PM.
(3) John (*as) ran as Mary ran/did. comparee PM parameter SM standard parameter
- Rett (2013) observes that the lack of a PM correlates with interpretive differences: (3) only has a manner reading and not a degree reading.
- (3) can only refer to John running in the same way Mary did, not the same distance or at the same speed cf. (1) where John and Sue are of the same height.

Evidence

- When the parameter is non-adjectival and verbal, Haspelmath and Buchholz (1998) observe in a typological survey that languages typically use the same SM as with adjectival equatives but lack a PM.

$$
\begin{align*}
& \text { John } \left.\quad *^{*} \text { as }\right) \text { ran } \quad \text { as } \text { Mary ran/did. } \tag{3}\\
& \text { comparee PM }
\end{align*}
$$

- Rett (2013) observes that the lack of a PM correlates with interpretive differences: (3) only has a manner reading and not a degree reading. same distance or at the same speed cf. (1) where John and Sue are of the same height.

Variation
0000000000000000
Introduction

- When the parameter is non-adjectival and verbal, Haspelmath and Buchholz (1998) observe in a typological survey that languages typically use the same SM as with adjectival equatives but lack a PM.
(3) John (*as) ran as Mary ran/did. comparee PM parameter SM standard parameter
- Rett (2013) observes that the lack of a PM correlates with interpretive differences: (3) only has a manner reading and not a degree reading.
- (3) can only refer to John running in the same way Mary did, not the same distance or at the same speed cf. (1) where John and Sue are of the same height.

Introduction

- Dutch zo...als equatives seem to counterexemplify this typological generalization. In verbal equatives, the verb is marked with zo, exactly as with adjectival equatives (2).

```
(4) Nadine had zo <als Sigrid> gerend <als Sigrid>.
    Nadine has so as Sigrid ran as Sigrid
    'Nadine ran as Sigrid ran.
```

- Nonetheless, like English verbal equatives, the only available reading here is that Nadine ran in the same way Sigrid ran, not the same distance or speed.
- English and Dutch thus differ in the morphosyntactic ways of building equatives, though the distribution of readings across syntactic categories is identical.

Introduction

- Dutch zo...als equatives seem to counterexemplify this typological generalization. In verbal equatives, the verb is marked with $z o$, exactly as with adjectival equatives (2).

- Nonetheless, like English verbal equatives, the only available reading here is that Nadine ran in the same way Sigrid ran, not the same distance or speed.
- English and Dutch thus differ in the morphosyntactic ways of building equatives, though the distribution of readings across syntactic categories is identical.

Introduction

- Dutch zo...als equatives seem to counterexemplify this typological generalization. In verbal equatives, the verb is marked with $z o$, exactly as with adjectival equatives (2).
(4) Nadine had zo <als Sigrid> gerend <als Sigrid>. Nadine has so as Sigrid ran as Sigrid 'Nadine ran as Sigrid ran.'
- Nonetheless, like English verbal equatives, the only available reading here is that Nadine ran in the same way Sigrid ran, not the same distance or speed.
- English and Dutch thus differ in the morphosyntactic ways of building equatives, though the distribution of readings across syntactic categories is identical.

Introduction

- Dutch zo...als equatives seem to counterexemplify this typological generalization. In verbal equatives, the verb is marked with zo, exactly as with adjectival equatives (2).
(4) Nadine had zo <als Sigrid> gerend <als Sigrid>. Nadine has so as Sigrid ran as Sigrid 'Nadine ran as Sigrid ran.'
- Nonetheless, like English verbal equatives, the only available reading here is that Nadine ran in the same way Sigrid ran, not the same distance or speed.
- English and Dutch thus differ in the morphosyntactic ways of building equatives, though the distribution of readings across syntactic categories is identical.
- Dutch zo...als equatives seem to counterexemplify this typological generalization. In verbal equatives, the verb is marked with $z o$, exactly as with adjectival equatives (2).
(4) Nadine had zo <als Sigrid> gerend <als Sigrid>. Nadine has so as Sigrid ran as Sigrid 'Nadine ran as Sigrid ran.'
- Nonetheless, like English verbal equatives, the only available reading here is that Nadine ran in the same way Sigrid ran, not the same distance or speed.
- English and Dutch thus differ in the morphosyntactic ways of building equatives, though the distribution of readings across syntactic categories is identical.

Objectives

- Provide a compositional syntax-semantics of both adjectival and verbal equatives in Dutch by providing the semantics of the PM zo and the SM als.
- Compare Dutch with other Germanic languages like English and German in terms of morphosyntactic strategies and distribution of readings.
- Demonstrate that there are different semantic primitives for building equative constructions across Germanic.

Objectives

- Provide a compositional syntax-semantics of both adjectival and verbal equatives in Dutch by providing the semantics of the PM $z o$ and the SM als.
- Compare Dutch with other Germanic languages like English and German in terms of morphosyntactic strategies and distribution of readings.
- Demonstrate that there are different semantic primitives for building equative constructions across Germanic.

Objectives

- Provide a compositional syntax-semantics of both adjectival and verbal equatives in Dutch by providing the semantics of the PM zo and the SM als.
- Compare Dutch with other Germanic languages like English and German in terms of morphosyntactic strategies and distribution of readings.
- Demonstrate that there are different semantic primitives for building equative constructions across Germanic.

Objectives

- Provide a compositional syntax-semantics of both adjectival and verbal equatives in Dutch by providing the semantics of the PM zo and the SM als.
- Compare Dutch with other Germanic languages like English and German in terms of morphosyntactic strategies and distribution of readings.
- Demonstrate that there are different semantic primitives for building equative constructions across Germanic.

Overview of analysis

- The PM zo compositionally introduces kinds. Its truth-conditional contribution is to assert that its (eventuality) complement instantiates a kind.
- A kind: "the plurality of all possible objects of some type" i.e., function from worlds to objects (Chierchia, 1998; Anderson and Morzycki, 2015).
- Assume quantificational semantics for zo...als equatives, following fairly standard quantificational analyses for comparatives (e.g., Heim, 2000, 2006).
- Since zo here introduces kinds, quantificational semantics comes from elsewhere; we propose it is encoded in the SM als (cf. Alrenga et al., 2012; Alrenga and Kennedy, 2014 for comparatives).

Overview of analysis

- The PM zo compositionally introduces kinds. Its truth-conditional contribution is to assert that its (eventuality) complement instantiates a kind.
function from worlds to objects (Chierchia, 1998; Anderson and Morzycki, 2015).

Assume quantificational semantics for zo...als equatives, following fairly standard quantificational analyses for comparatives (e.g., Heim, 2000, 2006).

- Since zo here introduces kinds, quantificational semantics comes from elsewhere; we propose it is encoded in the SM als (cf. Alrenga et al., 2012; Alrenga and Kennedy, 2014 for comparatives).

Overview of analysis

- The PM zo compositionally introduces kinds. Its truth-conditional contribution is to assert that its (eventuality) complement instantiates a kind.
- A kind:"the plurality of all possible objects of some type" i.e., function from worlds to objects (Chierchia, 1998; Anderson and Morzycki, 2015).
- Assume quantificational semantics for zo...als equatives, following fairly standard quantificational analyses for comparatives (e.g., Heim, 2000, 2006).
- Since zo here introduces kinds, quantificational semantics comes from elsewhere; we propose it is encoded in the SM als (cf. Alrenga et al., 2012; Alrenga and Kennedy, 2014 for comparatives).

Overview of analysis

- The PM zo compositionally introduces kinds. Its truth-conditional contribution is to assert that its (eventuality) complement instantiates a kind.
- A kind:"the plurality of all possible objects of some type" i.e., function from worlds to objects (Chierchia, 1998; Anderson and Morzycki, 2015).
- Assume quantificational semantics for zo...als equatives, following fairly standard quantificational analyses for comparatives (e.g., Heim, 2000, 2006).
- Since zo here introduces kinds, quantificational semantics comes from elsewhere; we propose it is encoded in the SM als (cf. Alrenga et al., 2012; Alrenga and Kennedy, 2014 for comparatives).

Overview of analysis

- The PM zo compositionally introduces kinds. Its truth-conditional contribution is to assert that its (eventuality) complement instantiates a kind.
- A kind:"the plurality of all possible objects of some type" i.e., function from worlds to objects (Chierchia, 1998; Anderson and Morzycki, 2015).
- Assume quantificational semantics for zo...als equatives, following fairly standard quantificational analyses for comparatives (e.g., Heim, 2000, 2006).
- Since zo here introduces kinds, quantificational semantics comes from elsewhere; we propose it is encoded in the SM als (cf. Alrenga et al., 2012; Alrenga and Kennedy, 2014 for comparatives).

Morpho-semantic Ingredients

- We follow Anderson and Morzycki (2015) in proposing zo simply compositionally introduces a kind variable.
- As with Anderson and Morzycki (2015), kinds are taken to be a primitive type in the model, represented here as type π.
- Zo is a function from kinds to properties of objects, asserting that the object instantiates the kind, i.e., $k(o)$ (Chierchia, 1998).
- The variable o ranges over either states (adjectives) (e.g., Wellwood, 2015) or events (verbs).
(5) $\llbracket z o \rrbracket: \lambda \mathrm{k}_{\pi} \cdot \lambda \mathrm{o} .{ }^{\cup} \mathrm{k}(\mathrm{o})$

Morpho-semantic Ingredients

- We follow Anderson and Morzycki (2015) in proposing zo simply compositionally introduces a kind variable.
- As with Anderson and Morzycki (2015), kinds are taken to be a primitive type in the model, represented here as type π.
- Zo is a function from kinds to properties of objects, asserting that the object instantiates the kind, i.e., k (o) (Chierchia, 1998)
- The variable o ranges over either states (adjectives) (e.g., Wellwood, 2015) or events (verbs).
(5) $\llbracket z o \rrbracket: \lambda \mathrm{k}_{\pi} \cdot \lambda \mathrm{o} .{ }^{\cup} \mathrm{k}(\mathrm{o})$

Morpho-semantic Ingredients

- We follow Anderson and Morzycki (2015) in proposing zo simply compositionally introduces a kind variable.
- As with Anderson and Morzycki (2015), kinds are taken to be a primitive type in the model, represented here as type π.
- Zo is a function from kinds to properties of objects, asserting that the object instantiates the kind, i.e., $k(o)$ (Chierchia, 1998)
- The variable o ranges over either states (adjectives) (e.g., Wellwood, 2015) or events (verbs)

Morpho-semantic Ingredients

- We follow Anderson and Morzycki (2015) in proposing zo simply compositionally introduces a kind variable.
- As with Anderson and Morzycki (2015), kinds are taken to be a primitive type in the model, represented here as type π.
- Zo is a function from kinds to properties of objects, asserting that the object instantiates the kind, i.e., ${ }^{\cup} k(o)$ (Chierchia, 1998).

The variable o ranges over either states (adjectives) (e.g., Wellwood, 2015) or events (verbs)
(5) $\llbracket 20 \rrbracket: \lambda_{k} \cdot \lambda \cdot 0_{0}{ }^{U_{k}}(0)$

Morpho-semantic Ingredients

- We follow Anderson and Morzycki (2015) in proposing zo simply compositionally introduces a kind variable.
- As with Anderson and Morzycki (2015), kinds are taken to be a primitive type in the model, represented here as type π.
- Zo is a function from kinds to properties of objects, asserting that the object instantiates the kind, i.e., ${ }^{\cup} k(o)$ (Chierchia, 1998).
- The variable o ranges over either states (adjectives) (e.g., Wellwood, 2015) or events (verbs).

Morpho-semantic Ingredients

- We follow Anderson and Morzycki (2015) in proposing zo simply compositionally introduces a kind variable.
- As with Anderson and Morzycki (2015), kinds are taken to be a primitive type in the model, represented here as type π.
- Zo is a function from kinds to properties of objects, asserting that the object instantiates the kind, i.e., ${ }^{\cup} k(o)$ (Chierchia, 1998).
- The variable o ranges over either states (adjectives) (e.g., Wellwood, 2015) or events (verbs).
(5) $\llbracket z o \rrbracket: \lambda \mathrm{k}_{\pi} \cdot \lambda \mathrm{o} .{ }^{\cup} \mathrm{k}(\mathrm{o})$

Morpho-semantic Ingredients

- We deviate from Anderson and Morzycki (2015) in what contributes quantificational semantics (see appendix).
- Following proposals in e.g. Alrenga et al. (2012); Alrenga and Kennedy (2014), we attribute quantificational semantics to the SM als.
- Als takes as arguments two sets of kinds and asserts that the first is a subset of the second (e.g., Rett, 2020; Hohaus and Zimmermann, 2021).

$$
\begin{equation*}
\llbracket a l s \rrbracket: \lambda \mathrm{K}_{\pi t} \cdot \lambda \mathrm{~K}^{\prime}{ }_{\pi t} \cdot\{\mathrm{k}: \mathrm{K}(\mathrm{k})=1\} \subseteq\left\{\mathrm{k}^{\prime}: \mathrm{K}^{\prime}\left(\mathrm{k}^{\prime}\right)=1\right\} \tag{6}
\end{equation*}
$$

Morpho-semantic Ingredients

- We deviate from Anderson and Morzycki (2015) in what contributes quantificational semantics (see appendix).
- Following proposals in e.g. Alrenga et al. (2012); Alrenga and Kennedy (2014), we attribute quantificational semantics to the SM als.
- Als takes as arguments two sets of kinds and asserts that the first is a subset of the second (e.g., Rett, 2020; Hohaus and Zimmermann, 2021).

$$
\begin{equation*}
\llbracket a l s \rrbracket: \lambda \mathrm{K}_{\pi t} \cdot \lambda \mathrm{~K}^{\prime}{ }_{\pi t} \cdot\{\mathrm{k}: \mathrm{K}(\mathrm{k})=1\} \subseteq\left\{\mathrm{k}^{\prime}: \mathrm{K}^{\prime}\left(\mathrm{k}^{\prime}\right)=1\right\} \tag{6}
\end{equation*}
$$

Morpho-semantic Ingredients

- We deviate from Anderson and Morzycki (2015) in what contributes quantificational semantics (see appendix).
- Following proposals in e.g. Alrenga et al. (2012); Alrenga and Kennedy (2014), we attribute quantificational semantics to the SM als. subset of the second (e.g., Rett, 2020; Hohaus and Zimmermann, 2021). (6) $\llbracket a l_{s} \rrbracket: \lambda K_{\pi i} \cdot \lambda K^{\prime}{ }_{\pi t}\{k \cdot K(k)=1\} \subseteq\left\{k^{\prime}: K^{\prime}\left(k^{\prime}\right)=1\right\}$

Morpho-semantic Ingredients

- We deviate from Anderson and Morzycki (2015) in what contributes quantificational semantics (see appendix).
- Following proposals in e.g. Alrenga et al. (2012); Alrenga and Kennedy (2014), we attribute quantificational semantics to the SM als.
- Als takes as arguments two sets of kinds and asserts that the first is a subset of the second (e.g., Rett, 2020; Hohaus and Zimmermann, 2021).
(6) $\llbracket a l s \rrbracket: \lambda \mathrm{K}_{\pi t} \cdot \lambda \mathrm{~K}^{\prime}{ }_{\pi t} \cdot\{\mathrm{k}: \mathrm{K}(\mathrm{k})=1\} \subseteq\left\{\mathrm{k}^{\prime}: \mathrm{K}^{\prime}\left(\mathrm{k}^{\prime}\right)=1\right\}$

Morpho-semantic Ingredients

- We deviate from Anderson and Morzycki (2015) in what contributes quantificational semantics (see appendix).
- Following proposals in e.g. Alrenga et al. (2012); Alrenga and Kennedy (2014), we attribute quantificational semantics to the SM als.
- Als takes as arguments two sets of kinds and asserts that the first is a subset of the second (e.g., Rett, 2020; Hohaus and Zimmermann, 2021).

$$
\begin{equation*}
\llbracket a l s \rrbracket: \lambda \mathrm{K}_{\pi t} \cdot \lambda \mathrm{~K}^{\prime}{ }_{\pi t} \cdot\{\mathrm{k}: \mathrm{K}(\mathrm{k})=1\} \subseteq\left\{\mathrm{k}^{\prime}: \mathrm{K}^{\prime}\left(\mathrm{k}^{\prime}\right)=1\right\} \tag{6}
\end{equation*}
$$

Composition: Adjectival Equatives

Composition: Adjectival Equatives

(7) Jan is zo ${ }^{*}<$ als Sue $>$ groot <als Sue>. John is Zo alS Sue tall als Sue
'John is as tall as Sue.'

Composition: Adjectival Equatives

Jan is $\boldsymbol{z o}{ }^{*}<\boldsymbol{a l s}$ Sue $>$ groot <als Sue>. John is zo als Sue tall als Sue
'John is as tall as Sue.'

Evidence

Composition: Adjectival Equatives

- Matrix clause:

- Standard clause:

- Final steps where als takes the two sets of kinds as argument:

$$
\begin{equation*}
\left.\pi(7) \pi: \lambda^{\prime}, \quad\left\{\mathrm{k}: \exists \mathrm{s}^{[\text {Tall }}(\mathrm{s}, \text { sue }) \wedge \cup_{k}\left(s^{\prime}\right)\right]=1\right\} \subseteq\left\{\mathrm{k}^{\prime}: \mathrm{K}^{\prime},\left(\mathrm{k}^{\prime}\right)=1\right\} \tag{10}
\end{equation*}
$$

[^0]
Composition：Adjectival Equatives

－Matrix clause：
（8）

a．		（Deg）
b．	【（6）】：$\lambda \mathrm{s}^{\prime} . \operatorname{TALL}\left(\mathrm{s}^{\prime}, j a n\right)$	（AP）
c．	凹（3）】 ：$\lambda \mathrm{s}^{\prime}$ ．TALL $\left(\mathrm{s}^{\prime}, j a n\right) \wedge{ }^{\mathrm{U}^{\prime}\left(\mathrm{s}^{\prime}\right)}$	（identical to DegP（4），PM）
d．		tial Closure，Lambda Abstraction）

－Standard clause
o Final steps where als takes the two sets of kinds as argument：

Composition：Adjectival Equatives

－Matrix clause：
（8）
a．$\quad \llbracket(5) \rrbracket: \lambda \mathrm{o} .{ }^{\cup} \mathrm{k}^{\prime}(\mathrm{o})$
（Deg）
b．【（6）：$\lambda \mathrm{s}^{\prime} \cdot \operatorname{TALL}\left(\mathrm{s}^{\prime}, j a n\right)$
（AP）
c．【（3）』：$\lambda \mathrm{s}^{\prime} . \operatorname{TALL}\left(\mathrm{s}^{\prime}, j a n\right) \wedge{ }^{\cup} \mathrm{k}^{\prime}\left(\mathrm{s}^{\prime}\right)$
（identical to DegP（4），PM）
d．【（2）$: \lambda \mathrm{k}^{\prime} . \exists \mathrm{s}^{\prime}\left[\right.$ Tall $\left.\left(\mathrm{s}^{\prime}, j a n\right) \wedge{ }^{\prime} \mathrm{k}^{\prime}\left(\mathrm{s}^{\prime}\right)\right]$（Existential Closure，Lambda Abstraction）
－Standard clause：
（9）
a．$\quad 11 \rrbracket$ ：$\lambda \mathrm{o} .{ }^{\cup} \mathrm{k}(\mathrm{o})$
b．$\quad 12 \rrbracket$ ：$\lambda \mathrm{s} . \operatorname{TALL}(\mathrm{s}$, sue $)$
c．$(9) \rrbracket: \lambda \mathrm{s} . \operatorname{TALL}(\mathrm{s}$, sue $) \wedge{ }^{\cup} \mathrm{k}(\mathrm{s})$ （identical to DegP（10），PM）
d．$\quad \llbracket \rrbracket \rrbracket: \lambda \mathrm{k} . \exists \mathrm{s}\left[\operatorname{TALL}(\mathrm{s}\right.$, sue $\left.) \wedge{ }^{\cup} \mathrm{k}(\mathrm{s})\right]$ （Existential Closure，Lambda Abstraction）
－Final steps where als takes the two sets of kinds as argument：

Composition：Adjectival Equatives

－Matrix clause：
a．$\quad \llbracket(5) \rrbracket: \lambda \mathrm{o} .{ }^{\cup} \mathrm{k}^{\prime}(\mathrm{o})$
b．【6】】：$\lambda \mathrm{s}^{\prime} \cdot \operatorname{TALL}\left(\mathrm{s}^{\prime}, j a n\right)$
c．【（3）』：$\lambda \mathrm{s}^{\prime} . \operatorname{TALL}\left(\mathrm{s}^{\prime}, j a n\right) \wedge{ }^{\cup} \mathrm{k}^{\prime}\left(\mathrm{s}^{\prime}\right)$
d．$\llbracket(2) \rrbracket: \lambda \mathrm{k}^{\prime} . \exists \mathrm{s}^{\prime}\left[\operatorname{TaLL}\left(\mathrm{s}^{\prime}, j a n\right) \wedge \cup^{\mathrm{k}}\right.$＇$\left.\left(\mathrm{s}^{\prime}\right)\right]$（Existential Closure，lambda Abstraction）
－Standard clause：
a．\quad（11）$\rrbracket: \lambda \mathrm{o} .{ }^{\cup} \mathrm{k}(\mathrm{o})$
b．$\quad 12 \rrbracket: \lambda \mathrm{s} . \operatorname{TALL}(\mathrm{s}$, sue）
c．$\llbracket 9 \rrbracket$ ：$\lambda \mathrm{s} . \operatorname{TALL}(\mathrm{s}$, sue $) \wedge{ }^{\cup} \mathrm{k}(\mathrm{s}) \quad$（identical to DegP（10），PM）
d．【8 $\rrbracket: \lambda \mathrm{k} . \exists \mathrm{s}\left[\operatorname{TaLL}(\mathrm{s}\right.$, sue $\left.) \wedge{ }^{\cup} \mathrm{k}(\mathrm{s})\right]$（Existential Closure，Lambda Abstraction）
－Final steps where als takes the two sets of kinds as argument：

$$
\begin{equation*}
\llbracket(7) \rrbracket: \lambda \mathrm{K}_{\pi t}^{\prime} .\left\{\mathrm{k}: \exists \mathrm{s}\left[\operatorname{TALL}(\mathrm{~s}, \text { sue }) \wedge^{\left.\left.\cup^{\mathrm{k}}(\mathrm{~s})\right]=1\right\} \subseteq\left\{\mathrm{k}^{\prime}: \mathrm{K}^{\prime}\left(\mathrm{k}^{\prime}\right)=1\right\}, ~}\right.\right. \tag{10}
\end{equation*}
$$

【（1）$\rrbracket:\left\{\mathrm{k}: \exists \mathrm{s}\left[\operatorname{TALL}(\mathrm{s}\right.\right.$, sue $) \wedge \cup^{\mathrm{k}(\mathrm{s})]=1\} \subseteq\left\{\mathrm{k}^{\prime}: \exists \mathrm{s}^{\prime}\left[\operatorname{TALL}\left(\mathrm{s}^{\prime}, j a n\right) \wedge{ }^{\cup} \mathrm{k}^{\prime}\left(\mathrm{s}^{\prime}\right)\right]=\right.}$ 1\}
＇the set of state kinds Sue＇s height instantiates is a subset of the set of state kinds John＇s height instantiates＇

Composition: Verbal Equatives

Composition: Verbal Equatives

(12) Nadine had zo <als Sigrid> gerend <als Sigrid>. Nadine has ZO als Sigrid ran alS Sigrid
'Nadine ran as Sigrid ran.'

Composition: Verbal Equatives

(12) Nadine had zo <als Sigrid> gerend <als Sigrid>. Nadine has zo als Sigrid ran ALS Sigrid
'Nadine ran as Sigrid ran.'
(1)

Composition: Verbal Equatives

- Matrix clause:

- Standard clause:
(14) a. $\because\left(11 \pi: \lambda_{0} \cdot k(0)\right.$ (AdvP)
b. $\quad 12 \pi: \lambda \mathrm{e} \cdot \mathrm{RUN}(\mathrm{e}$, sigrid $\left.) \mathrm{(vP}_{4}\right)$ c. $\llbracket(9) \rrbracket: \lambda e . \operatorname{RUN}(\mathrm{e}$, sigrid $) \wedge{ }^{\cup} \mathrm{k}(\mathrm{e}) \quad$ (identical to $v \mathrm{P}_{3}$ (10), PM) d. \quad (8$) \rrbracket: \lambda \mathrm{k} . \exists \mathrm{e} . \mathrm{Run}(\mathrm{e}$, sigrid $) \wedge \cup^{\mathrm{k}}(\mathrm{e}) \quad$ (Existential Closure, Lambda Abstraction)
- Final steps where als takes the two sets of kinds as argument:

(16)

'the set of event kinds Sigrid's running instantiates is a subset of the the set of event kinds Nadines's running instantiates'

Composition: Verbal Equatives

- Matrix clause:

- Standard clause:
(14)

- Final steps where als takes the two sets of kinds as argument:
(15)

(16)

'the set of event kinds Sigrid's running instantiates is a subset of the the set of event kinds Nadines's running instantiates'

Composition：Verbal Equatives

－Matrix clause：
a．$\llbracket(5) \rrbracket: \lambda \mathrm{o} .{ }^{\cup} \mathrm{k}^{\prime}(\mathrm{o})$ （AdvP，standard clause trace provides k^{\prime} ）
b．【（6）】：$\lambda \mathrm{e}^{\prime} \cdot \operatorname{RuN}\left(\mathrm{e}^{\prime}\right.$, nadine $)$
c．【（3）\downarrow ：$\lambda \mathrm{e}^{\prime} \cdot \operatorname{RUN}\left(\mathrm{e}^{\prime}\right.$, nadine $) \wedge \cup^{\mathrm{k}^{\prime}}\left(\mathrm{e}^{\prime}\right) \quad$（identical to $v \mathrm{P}_{1}$（4）， PM ）
d．【（2）】：$\lambda \mathrm{k}^{\prime} \cdot \exists \mathrm{e}^{\prime} \cdot \operatorname{RUN}\left(\mathrm{e}^{\prime}\right.$, nadine $) \wedge^{\cup^{\prime}} \mathrm{k}^{\prime}\left(\mathrm{e}^{\prime}\right)$
（Existential Closure，Lambda Abstraction）
－Standard clause：
a．$\quad 11 \rrbracket: \lambda \mathrm{o} .{ }^{\cup} \mathrm{k}(\mathrm{o})$ （AdvP）
b．$\quad 12 \rrbracket$ ：$\lambda e . \operatorname{RUN}(\mathrm{e}$, sigrid $)$ $\left(v \mathrm{P}_{4}\right)$

d．$\quad 8 \rrbracket$ ：$\lambda \mathrm{k} . \exists \mathrm{e} \cdot \mathrm{RUN}(\mathrm{e}$, sigrid $) \wedge \cup^{\mathrm{k}}(\mathrm{e}) \quad$（Existential Closure，Lambda Abstraction）
－Final steps where als takes the two sets of kinds as argument：

Composition：Verbal Equatives

－Matrix clause：
a．$\llbracket(5) \rrbracket: \lambda \mathrm{o} .{ }^{\cup} \mathrm{k}^{\prime}(\mathrm{o})$ （AdvP，standard clause trace provides k^{\prime} ）
b．【6］』：$\lambda \mathrm{e}^{\prime} \cdot \operatorname{RuN}\left(\mathrm{e}^{\prime}\right.$, nadine $) \quad\left(v \mathrm{P}_{2}\right)$
c．$\quad(3) \rrbracket$ ：$\lambda \mathrm{e}^{\prime} \cdot \operatorname{RUN}\left(\mathrm{e}^{\prime}\right.$, nadine $) \wedge^{\cup^{\prime}} \mathrm{k}^{\prime}\left(\mathrm{e}^{\prime}\right) \quad$（identical to $v \mathrm{P}_{1}$（4）， PM ）
d．【（2）】：$\lambda \mathrm{k}^{\prime} \cdot \exists \mathrm{e}^{\prime} \cdot \operatorname{RUN}\left(\mathrm{e}^{\prime}\right.$, nadine $) \wedge^{\cup^{\prime}} \mathrm{k}^{\prime}\left(\mathrm{e}^{\prime}\right)$
（Existential Closure，Lambda Abstraction）
－Standard clause：
a．\quad（11）$\rrbracket: \lambda \mathrm{o} .{ }^{\cup} \mathrm{k}(\mathrm{o})$
b．$\quad 12 \rrbracket: \lambda \mathrm{e} \cdot \operatorname{RUN}(\mathrm{e}$, sigrid $) \quad\left(v \mathrm{P}_{4}\right)$
c．$\quad 9 \rrbracket$ ！$\lambda \mathrm{e} \cdot \operatorname{RUN}(\mathrm{e}$, sigrid $) \wedge{ }^{\cup} \mathrm{k}(\mathrm{e}) \quad$（identical to $v \mathrm{P}_{3}$（10），PM）
d．$\llbracket 8 \rrbracket: \lambda \mathrm{k} . \exists \mathrm{e} \cdot \mathrm{RUN}(\mathrm{e}$, sigrid $) \wedge \cup^{\mathrm{k}}(\mathrm{e})$（Existential Closure，Lambda Abstraction）
－Final steps where als takes the two sets of kinds as argument：

$$
\begin{equation*}
\llbracket(7) \rrbracket: \lambda \mathrm{K}_{\pi t}^{\prime} \cdot\left\{\mathrm{k}: \exists \mathrm{e} \cdot \operatorname{RUN}(\mathrm{e}, \text { sigrid }) \wedge \cup^{\mathrm{k}}(\mathrm{e})=1\right\} \subseteq\left\{\mathrm{k}^{\prime}: \mathrm{K}^{\prime}\left(\mathrm{k}^{\prime}\right)=1\right\} \tag{15}
\end{equation*}
$$

$\mathbb{U} 1$ ，$:\left\{\mathrm{k}: \exists \mathrm{e} \cdot \operatorname{RUN}(\mathrm{e}\right.$, sigrid $) \wedge^{\left.\cup^{\mathrm{k}}(\mathrm{e})=1\right\} \subseteq\left\{\mathrm{k}^{\prime}: \exists \mathrm{e}^{\prime} \cdot \operatorname{RUN}\left(\mathrm{e}^{\prime}, \text { nadine }\right) \wedge\right.}$ $\left.\mathrm{k}\left(\mathrm{e}^{\prime}\right)=1\right\}$
＇the set of event kinds Sigrid＇s running instantiates is a subset of the the set of event kinds Nadines＇s running instantiates＇

Evidence

Linear Position of Standard Als-clause

- Caveat: the standard als-clause can appear immediately following zo or on the right periphery with verbal equatives (12), but not for adjectival equatives (7) (Corver, 2018).
- We can understand this if $z o$ is a cross-categorial element with different categorial status across contexts. $Z o$ is a head within the extended projection of the adjective, meaning the standard als-clause in adjectival equatives is base-generated in its surface position (Corver, 1997, 2018).
- Alternatively, zo is a phrasal modifier of VPs, as evidenced by the fact that the als-clause can 'stay in-situ' next to zo preverbally in verbal equatives.

Linear Position of Standard Als-clause

- Caveat: the standard als-clause can appear immediately following zo or on the right periphery with verbal equatives (12), but not for adjectival equatives (7) (Corver, 2018).

> We can understand this if $z o$ is a cross-categorial element with different categorial status across contexts. $Z o$ is a head within the extended projection of the adjective, meaning the standard als-clause in adjectival equatives is base-generated in its surface position (Corver, 1997, 2018).

Alternatively, $z o$ is a phrasal modifier of VPs, as evidenced by the fact that the als-clause can 'stay in-situ' next to zo preverbally in verbal equatives.

Linear Position of Standard Als-clause

- Caveat: the standard als-clause can appear immediately following zo or on the right periphery with verbal equatives (12), but not for adjectival equatives (7) (Corver, 2018).
- We can understand this if $z o$ is a cross-categorial element with different categorial status across contexts. $Z o$ is a head within the extended projection of the adjective, meaning the standard als-clause in adjectival equatives is base-generated in its surface position (Corver, 1997, 2018).

Linear Position of Standard Als-clause

- Caveat: the standard als-clause can appear immediately following zo or on the right periphery with verbal equatives (12), but not for adjectival equatives (7) (Corver, 2018).
- We can understand this if zo is a cross-categorial element with different categorial status across contexts. Zo is a head within the extended projection of the adjective, meaning the standard als-clause in adjectival equatives is base-generated in its surface position (Corver, 1997, 2018).
- Alternatively, zo is a phrasal modifier of VPs, as evidenced by the fact that the als-clause can 'stay in-situ' next to zo preverbally in verbal equatives.

Evidence

Linear Position of Standard Als-clause

- We take the right-peripheral position of the als-clause in verbal equatives to be derived by Quantifier Raising (QR), which has been proposed to be rightward movement (most notably Fox and Nissenbaum, 1999).
- In verbal equatives, the als-clause, as a generalized quantifier over kinds, must QR from its base position as complement of zo as there is a semantic type-mismatch in this position.
- The possibility of two distinct linear positions means that QR can either be covert (in-situ immediately following zo) or overt (right-peripheral).
- Scopal interactions with matrix modal verbs (to be discussed) provide evidence that regardless of linear position, the als-clause always undergoes QR for semantic interpretation.

Linear Position of Standard Als-clause

- We take the right-peripheral position of the als-clause in verbal equatives to be derived by Quantifier Raising (QR), which has been proposed to be rightward movement (most notably Fox and Nissenbaum, 1999).
- In verbal equatives, the als-clause, as a generalized quantifier over kinds, must QR from its base position as complement of zo as there is a semantic type-mismatch in this position.
- The possibility of two distinct linear positions means that QR can either be covert (in-situ immediately following zo) or overt (right-peripheral)

Scopal interactions with matrix modal verbs (to be discussed) provide evidence that regardless of linear position, the als-clause always undergoes QR for semantic interpretation.

Linear Position of Standard Als-clause

- We take the right-peripheral position of the als-clause in verbal equatives to be derived by Quantifier Raising (QR), which has been proposed to be rightward movement (most notably Fox and Nissenbaum, 1999).
- In verbal equatives, the als-clause, as a generalized quantifier over kinds, must QR from its base position as complement of zo as there is a semantic type-mismatch in this position.
The possibility of two distinct linear positions means that QR can either be covert (in-situ immediately following zo) or overt (right-peripheral)
Scopal interactions with matrix modal verbs (to be discussed) provide evidence that regardless of linear position, the als-clause always undergoes QR for semantic interpretation.
- We take the right-peripheral position of the als-clause in verbal equatives to be derived by Quantifier Raising (QR), which has been proposed to be rightward movement (most notably Fox and Nissenbaum, 1999).
- In verbal equatives, the als-clause, as a generalized quantifier over kinds, must QR from its base position as complement of $z o$ as there is a semantic type-mismatch in this position.
- The possibility of two distinct linear positions means that QR can either be covert (in-situ immediately following zo) or overt (right-peripheral).

> Scopal interactions with matrix modal verbs (to be discussed) provide evidence that regardless of linear position, the als-clause always undergoes QR for semantic interpretation.

Linear Position of Standard Als-clause

- We take the right-peripheral position of the als-clause in verbal equatives to be derived by Quantifier Raising (QR), which has been proposed to be rightward movement (most notably Fox and Nissenbaum, 1999).
- In verbal equatives, the als-clause, as a generalized quantifier over kinds, must QR from its base position as complement of $z o$ as there is a semantic type-mismatch in this position.
- The possibility of two distinct linear positions means that QR can either be covert (in-situ immediately following zo) or overt (right-peripheral).
- Scopal interactions with matrix modal verbs (to be discussed) provide evidence that regardless of linear position, the als-clause always undergoes QR for semantic interpretation.

Degrees and Manners

- What is a state/event kind?

There is a sense that, in the case of states associated with gradable predicates, degrees are a central part of what states are for. The principal reason we talk about such states is to compare them in a scalar fashion to others, or to a standard.'
'Nevertheless, it seems reasonable to suppose that a core part of what it is to be an event is to be realized in a certain manner. To be sure, for some events, we care a great deal about their temporal extent, and for others, about their spacial extent. But for virtually any event, we care about how it took place. We don't talk about events chiefly to measure them. We talk about them chiefly to characterize or explain them.'
(Anderson and Morzycki, 2015, p. 811)

Evidence

Degrees and Manners

- What is a state/event kind?
'There is a sense that, in the case of states associated with gradable predicates, degrees are a central part of what states are for. The principal reason we talk about such states is to compare them in a scalar fashion to others, or to a standard.'
'Nevertheless, it seems reasonable to suppose that a core part of what it is to be an event is to be realized in a certain manner. To be sure, for some events, we care a great deal about their temporal extent, and for others, about their spacial extent. But for virtually any event, we care about how it took place. We don't talk about events chiefly to measure them. We talk about them chiefly to characterize or explain them.'
(Anderson and Morzycki, 2015, p. 811)
- What is a state/event kind?
'There is a sense that, in the case of states associated with gradable predicates, degrees are a central part of what states are for. The principal reason we talk about such states is to compare them in a scalar fashion to others, or to a standard.'

(Anderson and Morzycki, 2015, p. 811)
- What is a state/event kind?
'There is a sense that, in the case of states associated with gradable predicates, degrees are a central part of what states are for. The principal reason we talk about such states is to compare them in a scalar fashion to others, or to a standard.'
'Nevertheless, it seems reasonable to suppose that a core part of what it is to be an event is to be realized in a certain manner. To be sure, for some events, we care a great deal about their temporal extent, and for others, about their spacial extent. But for virtually any event, we care about how it took place. We don't talk about events chiefly to measure them. We talk about them chiefly to characterize or explain them.'
(Anderson and Morzycki, 2015, p. 811)

Degrees and Manners

- Not any collection of states and events across worlds corresponds to a degree or a manner.
- All possible states of having the same 'amount' or less of a property correspond to a degree, i.e., an equivalence class of states (cf. Cresswell, 1976; Schwarzchild, 2013).
- All possible events described by a verb carried out in the same way independent of spatio-temporal location correspond to a manner.

Degrees and Manners

- Not any collection of states and events across worlds corresponds to a degree or a manner.
- All possible states of having the same 'amount' or less of a property correspond to a degree, i.e., an equivalence class of states (cf. Cresswell, 1976; Schwarzchild, 2013).
- All possible events described by a verb carried out in the same way independent of spatio-temporal location correspond to a manner.

Degrees and Manners

－Not any collection of states and events across worlds corresponds to a degree or a manner．
－All possible states of having the same＇amount＇or less of a property correspond to a degree，i．e．，an equivalence class of states（cf．Cresswell，1976；Schwarzchild，2013）．

All possible events described by a verb carried out in the same way independent of spatio－temporal location correspond to a manner． （17）
 b．【Floyd danced elegantly】：入e．DANCE（e，floyd） ELEGANT $^{\text {e }}$ ）

- Not any collection of states and events across worlds corresponds to a degree or a manner.
- All possible states of having the same 'amount' or less of a property correspond to a degree, i.e., an equivalence class of states (cf. Cresswell, 1976; Schwarzchild, 2013).
- All possible events described by a verb carried out in the same way independent of spatio-temporal location correspond to a manner.

- Not any collection of states and events across worlds corresponds to a degree or a manner.
- All possible states of having the same 'amount' or less of a property correspond to a degree, i.e., an equivalence class of states (cf. Cresswell, 1976; Schwarzchild, 2013).
- All possible events described by a verb carried out in the same way independent of spatio-temporal location correspond to a manner.
a. \llbracket Floyd is six feet tall \rrbracket : $\lambda \mathrm{s} . \operatorname{TALL}(\mathrm{s}$, floyd $) \wedge{ }^{\cup}$ SIX-FEET(s)

Degrees and Manners

- Degrees and manners are, in a sense, special sorts of properties of states and kinds since they correspond to particular pluralities of such objects.
- Anderson and Morzycki (2015): degrees and kinds are distinguished properties of eventualities, and zo accesses only such properties, implemented as a presupposition.
(18) a. $\operatorname{DIST}(o, \mathrm{P})$ is true iff P is among the distinguished properties of o .
b. $\llbracket z o \rrbracket: \lambda \mathrm{k} \cdot \lambda \mathrm{o}: \operatorname{DIST}\left(\mathrm{o},{ }^{U} \mathrm{k}\right) \cdot{ }^{U} \mathrm{k}(\mathrm{o})$
(Anderson and Morzycki, 2015, p. 811-812)

Degrees and Manners

- Degrees and manners are, in a sense, special sorts of properties of states and kinds since they correspond to particular pluralities of such objects.
- Anderson and Morzycki (2015): degrees and kinds are distinguished properties of eventualities, and zo accesses only such properties, implemented as a presupposition.
(18) a. $\operatorname{DIST}(o, P)$ is true iff P is among the distinguished
properties of o.
b. $\llbracket z o \rrbracket: \lambda \mathrm{k} \cdot \lambda \mathrm{o}: \operatorname{DIST}(\mathrm{o}, \mathrm{k}) \cdot \mathrm{k}(\mathrm{o})$
(Anderson and Morzycki, 2015, p. 811-812)

Degrees and Manners

- Degrees and manners are, in a sense, special sorts of properties of states and kinds since they correspond to particular pluralities of such objects.
- Anderson and Morzycki (2015): degrees and kinds are distinguished properties of eventualities, and zo accesses only such properties, implemented as a presupposition.

(Anderson and Morzycki, 2015, p. 811-812)

Degrees and Manners

- Degrees and manners are, in a sense, special sorts of properties of states and kinds since they correspond to particular pluralities of such objects.
- Anderson and Morzycki (2015): degrees and kinds are distinguished properties of eventualities, and $z o$ accesses only such properties, implemented as a presupposition.
(18) a. $\operatorname{DIST}(o, P)$ is true iff P is among the distinguished properties of o.
b. $\llbracket z o \rrbracket: \lambda \mathrm{k} \cdot \lambda \mathrm{o}: \operatorname{DIST}\left(\mathrm{o},{ }^{\cup} \mathrm{k}\right) \cdot{ }^{\cup} \mathrm{k}(\mathrm{o})$
(Anderson and Morzycki, 2015, p. 811-812)

Supporting Evidence

- Upshot of the proposed analysis: we expect zo to be a general kind introducer referring to degrees or manners.
- This is indeed what we find; in non-equative contexts, $z o$ behaves like an anaphoric pro-form, referring to contextually provided degrees or manners.

Supporting Evidence

- Upshot of the proposed analysis: we expect zo to be a general kind introducer referring to degrees or manners.
an anaphoric pro-form, referring to contextually provided degrees or manners.

Supporting Evidence

- Upshot of the proposed analysis: we expect zo to be a general kind introducer referring to degrees or manners.
- This is indeed what we find; in non-equative contexts, zo behaves like an anaphoric pro-form, referring to contextually provided degrees or manners.

Supporting Evidence: Distribution of Readings

(19)

```
Jan is 1.80m groot. Jane is ook zo groot.
John is }1.80\textrm{m}\mathrm{ tall Jane is also zo tall
'John is }1.80\textrm{m}\mathrm{ tall and Jane is }1.80\textrm{m}\mathrm{ tall too.'
# 'John is 1.80m tall, and Jane is also tall at 1.85m.
```

(proform for degrees, not evaluative)
(20) Jan gedroeg zich erg goed vandaag. Jane gedroeg zich ook zo. John behave himself very bad today Jane behave herself also zo 'John behaved badly today and Jane behaved so too.
(proform for manners)

Supporting Evidence: Distribution of Readings

(19) Jan is 1.80 m groot. Jane is ook $\boldsymbol{z o}$ groot. John is 1.80 m tall Jane is also zo tall
'John is 1.80 m tall and Jane is 1.80 m tall too.'
\# 'John is 1.80 m tall, and Jane is also tall at 1.85 m .'
(proform for degrees, not evaluative)
(20) Jan gedroeg zich erg goed vandaag. Jane gedroeg zich ook zo.
John behave himself very bad today Jane behave herself also zo
'John behaved badly today and Jane behaved so too.'
(proform for manners)

Supporting Evidence: Distribution of Readings

(19) Jan is 1.80 m groot. Jane is ook $\boldsymbol{z o}$ groot. John is 1.80 m tall Jane is also zo tall 'John is 1.80 m tall and Jane is 1.80 m tall too.' \# 'John is 1.80 m tall, and Jane is also tall at 1.85 m .'
(proform for degrees, not evaluative)
(20) Jan gedroeg zich erg goed vandaag. Jane gedroeg zich ook zo. John behave himself very bad today Jane behave herself also zo 'John behaved badly today and Jane behaved so too.'
(proform for manners)

Supporting Evidence: Distribution of Readings

> - This sensitivity to syntactic category of the parameter in the distribution of degree and manner readings naturally carries over to equatives if $z o$'s function is uniformly to introduce kinds that are distinguished properties of what it modifies.
> Again, this is what we find. Zo...als equatives only have degree readings with adjectival parameters, and only have manner readings with verbal parameters.

Supporting Evidence: Distribution of Readings

- This sensitivity to syntactic category of the parameter in the distribution of degree and manner readings naturally carries over to equatives if $z o$'s function is uniformly to introduce kinds that are distinguished properties of what it modifies.

```
Again, this is what we find. Zo...als equatives only have degree
readings with adjectival parameters, and only have manner
readings with verbal parameters.
```


Supporting Evidence: Distribution of Readings

- This sensitivity to syntactic category of the parameter in the distribution of degree and manner readings naturally carries over to equatives if $z o$'s function is uniformly to introduce kinds that are distinguished properties of what it modifies.
- Again, this is what we find. Zo...als equatives only have degree readings with adjectival parameters, and only have manner readings with verbal parameters.

Supporting Evidence: Adjectival Equatives Only Have Degree Readings

(21)
(22)

Continuations for (21)
a. \#Jan is 1 m 85 en Sue 1 m 80 .

John is 1 m 85 and Sue 1 m 80
'John's height is 1 m 85 and Sue's is 1 m 80 .'
b. Jan is 1 m 68 en Sue ook.

John is 1 m 68 and Sue too
'John's height is 1 m 68 and Sue is 1 m 68 too.

Supporting Evidence: Adjectival Equatives Only Have Degree Readings

(21) Jan is $\boldsymbol{z o}{ }^{*}<\boldsymbol{a l s}$ Sue $>$ groot <als Sue>. John is zo als Sue tall als Sue 'John is as tall as Sue.'

Supporting Evidence: Adjectival Equatives Only Have Degree Readings

(21) Jan is $\boldsymbol{z o}{ }^{*}<\boldsymbol{a l s}$ Sue $>$ groot <als Sue>. John is zo als Sue tall als Sue 'John is as tall as Sue.'
(22) Continuations for (21)
a. \#Jan is 1 m 85 en Sue 1 m 80 .

John is 1 m 85 and Sue 1 m 80
'John's height is 1 m 85 and Sue's is 1 m 80 .' (evaluative)
b. Jan is 1 m 68 en Sue ook.

John is 1 m 68 and Sue too
'John's height is 1 m 68 and Sue is 1 m 68 too.'

Supporting Evidence: Verbal Equatives Only Have Manner Readings

(23)

(24)

Continuations for (23)
a. Namelijk in cirkels.
namely in circles
'Namely in circles.'
(manner)
b. \#Namelijk, 2 km per uu
namely 2 km per hour
'Namely at $2 \mathrm{~km} / \mathrm{h}$.'

Supporting Evidence: Verbal Equatives Only Have Manner Readings

(23) Nadine had zo <als Sigrid> gerend <als Sigrid>. Nadine has Zo alS Sigrid ran ALS Sigrid 'Nadine ran as Sigrid ran.'

Supporting Evidence: Verbal Equatives Only Have Manner Readings

(23) Nadine had zo <als Sigrid> gerend <als Sigrid>. Nadine has Zo alS Sigrid ran ALS Sigrid 'Nadine ran as Sigrid ran.'
(24) Continuations for (23)
a. Namelijk in cirkels.
namely in circles
'Namely in circles.'
b. \#Namelijk, 2 km per uur
namely 2 km per hour
'Namely at $2 \mathrm{~km} / \mathrm{h}$.'

Supporting Evidence: Verbal Equatives Only Have Manner Readings

- Crucially, zo...als verbal equatives never have degree readings even with particular verbs classes that have been argued to involve degree variables in their semantics.
- One prominent class of such verbs: deadjectival degree achievement verbs, which indicate that some object has undergone a change in holding some degree of a property over the course of an event (e.g., Kennedy and Levin, 2008).
- However the semantics of degree achievement verbs is modeled (Rett, 2013 suggests degree arguments are not lexicalized arguments of such verbs), it seems zo can only access the manner properties of the event.

Supporting Evidence: Verbal Equatives Only Have Manner Readings

- Crucially, zo...als verbal equatives never have degree readings even with particular verbs classes that have been argued to involve degree variables in their semantics.
- One prominent class of such verbs: deadjectival degree achievement verbs, which indicate that some object has undergone a change in holding some degree of a property over the course of an event (e.g., Kennedy and Levin, 2008)
However the semantics of degree achievement verbs is modeled (Rett, 2013 suggests degree arguments are not lexicalized arguments of such verbs), it seems zo can only access the manner properties of the event.

Supporting Evidence: Verbal Equatives Only Have Manner Readings

- Crucially, zo...als verbal equatives never have degree readings even with particular verbs classes that have been argued to involve degree variables in their semantics.
- One prominent class of such verbs: deadjectival degree achievement verbs, which indicate that some object has undergone a change in holding some degree of a property over the course of an event (e.g., Kennedy and Levin, 2008).

2013 suggests degree arguments are not lexicalized arguments of such verbs), it seems zo can only access the manner properties of the event.

Supporting Evidence: Verbal Equatives Only Have Manner Readings

- Crucially, zo...als verbal equatives never have degree readings even with particular verbs classes that have been argued to involve degree variables in their semantics.
- One prominent class of such verbs: deadjectival degree achievement verbs, which indicate that some object has undergone a change in holding some degree of a property over the course of an event (e.g., Kennedy and Levin, 2008).
- However the semantics of degree achievement verbs is modeled (Rett, 2013 suggests degree arguments are not lexicalized arguments of such verbs), it seems zo can only access the manner properties of the event.

Supporting Evidence: Verbal Equatives Only Have Manner Readings

(25)

(degree achievements with zo...als)

Supporting Evidence: Verbal Equatives Only Have Manner Readings

(25) We hebben de pizza zo afgekoeld als de lasagne we have the pizza zO cooled.down ALS the lasagna
'We cooled down the pizza like the lasagna.'
a. Namelijk door te blazen. namely by to blow 'Namely by blowing.'
b. \#Namelijk tot 21 graden.
namely until 21 degrees
'Namely to 21 degrees.'
(degree achievements with zo...als)

Supporting Evidence: Scope Ambiguity with Matrix Modals

- One of the most striking pieces of evidence for a quantificational analysis of comparatives is that the scope of comparison interacts with other scope-taking elements like matrix modal verbs (Heim, 2000, 2006, a.m.o.)
(26)

(maximum length 25 pages, $\mathrm{DegP} \gg$ modal)

Supporting Evidence: Scope Ambiguity with Matrix Modals

- One of the most striking pieces of evidence for a quantificational analysis of comparatives is that the scope of comparison interacts with other scope-taking elements like matrix modal verbs (Heim, 2000, 2006, a.m.o.).
(26)

Supporting Evidence: Scope Ambiguity with Matrix Modals

- One of the most striking pieces of evidence for a quantificational analysis of comparatives is that the scope of comparison interacts with other scope-taking elements like matrix modal verbs (Heim, 2000, 2006, a.m.o.).

Context: My draft is 20 pages long.
a. De definitieve versie mag exact vijf pagina's langer zijn the final version may exactly five pages longer be dan de kladversie. than the draft
'The final paper is allowed to be exactly five pages longer than this draft.'
b. Maar zelfs tien pagina's meer dan wat je nu hebt is nog but even ten pages more than what you now have is still oké.
okay
'But even ten pages more than what you have now will still be okay.' (minimum length 25 pages, modal \gg DegP)
c. Maar in geen geval langer.
but in no case longer
'But definitely not longer!'
(maximum length 25 pages, DegP \gg modal)

Supporting Evidence: Scope Ambiguity with Matrix Modals

- The same scope ambiguity can be reproduced with zo...als adjectival equatives, which produce degree readings only (21)-(22). This is derived by attaching the als-clause to the embedded clause under the modal, or to the matrix clause above the modal.
(27)
 (based on Hohaus and Zimmermann, 2021)

Supporting Evidence: Scope Ambiguity with Matrix Modals

- The same scope ambiguity can be reproduced with zo...als adjectival equatives, which produce degree readings only (21)-(22). This is derived by attaching the als-clause to the embedded clause under the modal, or to the matrix clause above the modal.

Supporting Evidence: Scope Ambiguity with Matrix Modals

- The same scope ambiguity can be reproduced with zo...als adjectival equatives, which produce degree readings only (21)-(22). This is derived by attaching the als-clause to the embedded clause under the modal, or to the matrix clause above the modal.

Context: You just submitted your B.A. thesis and proudly show it to me. I inquire after its length and you tell me that it's 60 pages. I'm currently writing my master's thesis and I tell you...
a. Mijn master thesis mag net zo lang zijn als jouw bachelor my master's thesis may exactly zo long be ALS your bachelor paper.
paper
'My master's thesis is allowed to be exactly as long as your B.A. thesis.'
b. Maar vijf pagina's korter dan wat je nu ingediend hebt zou but 5 pages shorter than what you now submitted have would ook al oké zijn en tot 70 pagina's is ook nog toegelaten. also already okay be and until 70 pages is also still allowed 'But even 5 pages shorter would be okay and 70 pages is allowed as well.'
(modal $\gg z o \ldots$ als)
c. En geen pagina meer! and no page more 'And not a single more!'
(zo...als > modal)
(based on Hohaus and Zimmermann, 2021)

Supporting Evidence: Scope Ambiguity with Matrix Modals

- More interestingly, the same scope ambiguity can be reproduced with verbal equatives equating manners, so long as the set of manners being equated is contextually specified.
- This is derived if the als-clause must QR for interpretive reasons. It can either attach to the embedded clause under the modal, or the matrix clause above the modal, regardless of its surface linear position.
(28)

```
CowmexT: A foreign colleague can spend their research funds on
equipment, books, and conference travel. She asks about how I may
spend my funds and I reply...
    a. Ik mag mijn beurs exact zo <als jij> gebruiken <als jij>>
    I may my funding exactly zo ALS you use ALS you
    'I may spend my funds in exactly the same way as you.
    b. Maar ik mag ze ook gebruiken om sprekers uit te nodigen.
    but I may her also use to speakers PRT PRT invite
    But I may also spend it on inviting speakers.' (modal }>>zo\ldotsals
    En voor niets anders!
    and for nothing else
    And nothing else!' (zo\ldotsals > modal)
```


Supporting Evidence: Scope Ambiguity with Matrix Modals

- More interestingly, the same scope ambiguity can be reproduced with verbal equatives equating manners, so long as the set of manners being equated is contextually specified.

This is derived if the als-clause must QR for interpretive reasons. It can either attach to the embedded clause under the modal, or the matrix clause above the modal, regardless of its surface linear position.
(28)

(based on Hohaus and Zimmermann, 2021)

Supporting Evidence: Scope Ambiguity with Matrix Modals

- More interestingly, the same scope ambiguity can be reproduced with verbal equatives equating manners, so long as the set of manners being equated is contextually specified.
- This is derived if the als-clause must QR for interpretive reasons. It can either attach to the embedded clause under the modal, or the matrix clause above the modal, regardless of its surface linear position.

(based on Hohaus and Zimmermann, 2021)

Supporting Evidence: Scope Ambiguity with Matrix Modals

- More interestingly, the same scope ambiguity can be reproduced with verbal equatives equating manners, so long as the set of manners being equated is contextually specified.
- This is derived if the als-clause must QR for interpretive reasons. It can either attach to the embedded clause under the modal, or the matrix clause above the modal, regardless of its surface linear position.

Context: A foreign colleague can spend their research funds on equipment, books, and conference travel. She asks about how I may spend my funds and I reply...
a. Ik mag mijn beurs exact $\boldsymbol{z o}<\boldsymbol{a} \boldsymbol{l} \boldsymbol{s}$ jij> gebruiken $<\boldsymbol{a} \boldsymbol{l} \boldsymbol{s}$ jij>. I may my funding exactly zo alS you use ALS you 'I may spend my funds in exactly the same way as you.'
b. Maar ik mag ze ook gebruiken om sprekers uit te nodigen. but I may her also use to speakers PRT PRT invite 'But I may also spend it on inviting speakers.' (modal $\gg z o \ldots a l s)$
c. En voor niets anders! and for nothing else 'And nothing else!' (zo...als > modal)

Conclusions

Cross-Germanic Variation: English

- We have already seen one language which differs morphosyntactically in how equatives are built across adjectives and verbs: English.
- English marks adjectives with a PM but not verbs in equatives; the presence of a PM corresponds with a degree reading of the equative, its absence with a property/manner reading.
(29) a. Sue is as tall as Bill, but she is short
(degree reading, non-evaluative)
b. Sue is (*as) tall like Bill, \# but she is short.
(no PM, property reading, evaluative)
(30) a. Kim (*as) cooled the pizza as Sue did, namely by blowing on it. (no PM, manner reading)
b. Kim cooled the solution as much as Sue did, by 10
degrees Celsius. (PM with much, degree reading)

Cross-Germanic Variation: English

- We have already seen one language which differs morphosyntactically in how equatives are built across adjectives and verbs: English.

Cross-Germanic Variation: English

- We have already seen one language which differs morphosyntactically in how equatives are built across adjectives and verbs: English.
- English marks adjectives with a PM but not verbs in equatives; the presence of a PM corresponds with a degree reading of the equative, its absence with a property/manner reading.

Cross-Germanic Variation: English

- We have already seen one language which differs morphosyntactically in how equatives are built across adjectives and verbs: English.
- English marks adjectives with a PM but not verbs in equatives; the presence of a PM corresponds with a degree reading of the equative, its absence with a property/manner reading.
(29) a. Sue is as tall as Bill, but she is short
(degree reading, non-evaluative)
b. Sue is $\left({ }^{*}\right.$ as) tall like Bill, \# but she is short. (no PM, property reading, evaluative)
Kim (*as) cooled the pizza as Sue did, namely by blowing on it. (no PM, manner reading) b. Kim cooled the solution as much as Sue did, by 10 degrees Celsius.
- We have already seen one language which differs morphosyntactically in how equatives are built across adjectives and verbs: English.
- English marks adjectives with a PM but not verbs in equatives; the presence of a PM corresponds with a degree reading of the equative, its absence with a property/manner reading.
(29) a. Sue is as tall as Bill, but she is short
(degree reading, non-evaluative)
b. Sue is $\left({ }^{*} a s\right)$ tall like Bill, \# but she is short. (no PM, property reading, evaluative)
(30) a. Kim (*as) cooled the pizza as Sue did, namely by blowing on it.
(no PM, manner reading)
b. Kim cooled the solution as much as Sue did, by 10 degrees Celsius.
(PM with much, degree reading)

English PM as a Degree Quantifier

- Based on these observations, Rett (2013) analyzes the English PM as as a degree quantifier, and SM as as simply a generalized set abstractor.
- P^{δ} : a proposition of semantic type t containing an instance of a free variable δ, which can range over degrees or manners. $[\delta \rightarrow \alpha]$: asSM maps the variable δ to a corresponding variable of the same type α, which it lambda abstracts over.
(31) a. $\quad \llbracket \operatorname{as}_{P M} \rrbracket: \lambda \mathrm{D} \cdot \lambda \mathrm{D}^{\prime} \cdot \operatorname{mAx}(\mathrm{D}) \leq \max \left(\mathrm{D}^{\prime}\right)$ (Rett, 2013, p. 1107-1108)
- α and δ correspond to degree variables in adjectival equatives; the composition would be identical to standard analyses of comparatives, differing only in the relation introduced by the PM (\leq as compared to $<$ in comparatives).

English PM as a Degree Quantifier

- Based on these observations, Rett (2013) analyzes the English PM as as a degree quantifier, and SM as as simply a generalized set abstractor.
P^{δ} : a proposition of semantic type t containing an instance of a free variable δ, which can range over degrees or manners. $[\delta \rightarrow \alpha]$: asSM maps the variable δ to a corresponding variable of the same type α, which it lambda abstracts over.

English PM as a Degree Quantifier

- Based on these observations, Rett (2013) analyzes the English PM as as a degree quantifier, and SM as as simply a generalized set abstractor.
- P^{δ} : a proposition of semantic type t containing an instance of a free variable δ, which can range over degrees or manners. $[\delta \rightarrow \alpha]$: assM maps the variable δ to a corresponding variable of the same type α, which it lambda abstracts over.

> (Rett, 2013, p. 1107-1108)
α and δ correspond to degree variables in adjectival equatives; the composition would be identical to standard analyses of comparatives, differing only in the relation introduced by the $\mathrm{PM}(\leq$ as compared to $<$ in comparatives)

English PM as a Degree Quantifier

- Based on these observations, Rett (2013) analyzes the English PM as as a degree quantifier, and SM as as simply a generalized set abstractor.
- P^{δ} : a proposition of semantic type t containing an instance of a free variable δ, which can range over degrees or manners. $[\delta \rightarrow \alpha]$: assM maps the variable δ to a corresponding variable of the same type α, which it lambda abstracts over.
(31) a. $\quad \llbracket \operatorname{as}_{P M} \rrbracket: \lambda \mathrm{D} \cdot \lambda \mathrm{D}^{\prime} \cdot \max (\mathrm{D}) \leq \max \left(\mathrm{D}^{\prime}\right)$
b. $\llbracket \mathrm{as}_{S M} \rrbracket: \lambda \mathrm{P}^{\delta} \cdot \lambda \alpha \cdot \llbracket \mathrm{P}^{\delta} \rrbracket^{\lfloor\delta \rightarrow \alpha]}$
(Rett, 2013, p. 1107-1108)
- α and δ correspond to degree variables in adjectival equatives; the composition would be identical to standard analyses of comparatives, differing only in the relation introduced by the $\mathrm{PM}(\leq$ as compared to $<$ in comparatives)

English PM as a Degree Quantifier

- Based on these observations, Rett (2013) analyzes the English PM as as a degree quantifier, and SM as as simply a generalized set abstractor.
- P^{δ} : a proposition of semantic type t containing an instance of a free variable δ, which can range over degrees or manners. $[\delta \rightarrow \alpha]$: assM maps the variable δ to a corresponding variable of the same type α, which it lambda abstracts over.
(31) a. $\quad \llbracket \operatorname{as}_{P M} \rrbracket: \lambda \mathrm{D} \cdot \lambda \mathrm{D}^{\prime} \cdot \max (\mathrm{D}) \leq \max \left(\mathrm{D}^{\prime}\right)$
b. $\llbracket \operatorname{as}_{S M} \rrbracket: \lambda \mathrm{P}^{\delta} \cdot \lambda \alpha \cdot \llbracket \mathrm{P}^{\delta} \rrbracket \rrbracket^{\lfloor\delta \rightarrow \alpha]}$
(Rett, 2013, p. 1107-1108)
- α and δ correspond to degree variables in adjectival equatives; the composition would be identical to standard analyses of comparatives, differing only in the relation introduced by the PM (\leq as compared to $<$ in comparatives).

English Verbal Equatives

```
- Since English verbal equatives lack PMs and only have manner
    readings (even with e.g., degree achievement verbs), manner is taken
    by Rett (2013) to be a semantic primitive introduced by a null
    head \((\rho)\) that can be abstracted over.
- \(\rho\) takes an event predicate and introduces a relation \(\Re\) between an
    event variable and a free manner variable.
    (32) John danced as Sue danced.
        a. \(\quad \llbracket\) John danced \(\rrbracket=\llbracket \mathrm{OP}_{m}\) John danced \(\rho^{m} \rrbracket=\lambda \mathrm{m}\). ヨe[DANCED \((\mathrm{e}, j o h n)\)
    \(\left.\wedge{ }^{\wedge}(\mathrm{e}, \mathrm{m})\right]\)
        b. \(\quad\) as Sue danced \(\rrbracket=\llbracket\) as Sue danced \(\rho^{m^{\prime}} \rrbracket: \lambda \mathrm{m}^{\prime} \cdot \exists \mathrm{e}^{e}[\operatorname{DANCED}(\mathrm{e}\), sue \() \wedge\)
    \(\left.\Re\left(\mathrm{e}^{\prime}, \mathrm{m}^{\prime}\right)\right]\)
    【John danced as Sue danced]: ヨm,e,e'[DANCED \((\mathrm{e}, j o h m) \wedge \Re(e, m) \wedge\)
    DANCED \((\mathrm{e}\), sue \() \wedge \Re(\mathrm{e}, \mathrm{m})]\) Prebicate Modmicatron. Existmantai Closurb
        (Rett, 2013, p. 1122-1123)
－In prose：there is a manner that characterizes John and Mary＇s dancing．
```


English Verbal Equatives

- Since English verbal equatives lack PMs and only have manner readings (even with e.g., degree achievement verbs), manner is taken by Rett (2013) to be a semantic primitive introduced by a null head (ρ) that can be abstracted over.

- In prose: there is a manner that characterizes John and Mary's dancing.

English Verbal Equatives

- Since English verbal equatives lack PMs and only have manner readings (even with e.g., degree achievement verbs), manner is taken by Rett (2013) to be a semantic primitive introduced by a null head (ρ) that can be abstracted over.
- ρ takes an event predicate and introduces a relation \Re between an event variable and a free manner variable.
(32) John danced as Sue danced.

- In prose: there is a manner that characterizes John and Mary's dancing.

English Verbal Equatives

- Since English verbal equatives lack PMs and only have manner readings (even with e.g., degree achievement verbs), manner is taken by Rett (2013) to be a semantic primitive introduced by a null head (ρ) that can be abstracted over.
- ρ takes an event predicate and introduces a relation \Re between an event variable and a free manner variable.

John danced as Sue danced.
a. $\quad \llbracket$ John danced $\rrbracket=\llbracket \mathrm{OP}_{m}$ John danced $\rho^{m} \rrbracket=\lambda \mathrm{m} . \exists \mathrm{e}[\operatorname{DANCED}(\mathrm{e}, j o h n)$

$$
\begin{equation*}
\wedge \Re(\mathrm{e}, \mathrm{~m})] \tag{32}
\end{equation*}
$$

b. $\quad \llbracket$ as Sue danced $\rrbracket=\llbracket$ as Sue danced $\rho^{m^{\prime}} \rrbracket: \lambda \mathrm{m} \cdot \cdot \exists \mathrm{e}^{\prime}[\operatorname{DANCED}(\mathrm{e}$, sue $) \wedge$ $\left.\Re\left(\mathrm{e}^{\prime}, \mathrm{m}^{\prime}\right)\right]$
c. $\llbracket J o h n$ danced as Sue danced $\rrbracket: \exists \mathrm{m}, \mathrm{e}, \mathrm{e}^{\prime}[\operatorname{DANCED}(\mathrm{e}, j o h n) \wedge \Re(\mathrm{e}, \mathrm{m}) \wedge$ danced $(\mathrm{e}$, sue $\left.) \wedge \Re\left(\mathrm{e}^{\prime}, \mathrm{m}\right)\right] \quad$ Predicate Modification, Existential Closure (Rett, 2013, p. 1122-1123)

- In prose: there is a manner that characterizes John and Mary's dancing.

English Verbal Equatives

- Since English verbal equatives lack PMs and only have manner readings (even with e.g., degree achievement verbs), manner is taken by Rett (2013) to be a semantic primitive introduced by a null head (ρ) that can be abstracted over.
- ρ takes an event predicate and introduces a relation \Re between an event variable and a free manner variable.

John danced as Sue danced.
a. $\quad \llbracket$ John danced $\rrbracket=\llbracket \mathrm{OP}_{m}$ John danced $\rho^{m} \rrbracket=\lambda \mathrm{m} . \exists \mathrm{e}[\operatorname{DANCED}(\mathrm{e}, j o h n)$

$$
\begin{equation*}
\wedge \Re(\mathrm{e}, \mathrm{~m})] \tag{32}
\end{equation*}
$$

b. $\quad \llbracket$ as Sue danced $\rrbracket=\llbracket$ as Sue danced $\rho^{m^{\prime}} \rrbracket: \lambda \mathrm{m} \cdot \cdot \exists \mathrm{e}^{\prime}[\operatorname{DANCED}(\mathrm{e}$, sue $) \wedge$ $\left.\Re\left(\mathrm{e}^{\prime}, \mathrm{m}^{\prime}\right)\right]$
c. $\llbracket J o h n$ danced as Sue danced $\rrbracket: \exists \mathrm{m}, \mathrm{e}, \mathrm{e}^{\prime}[\operatorname{DANCED}(\mathrm{e}, j o h n) \wedge \Re(\mathrm{e}, \mathrm{m}) \wedge$ $\operatorname{DANCED}(\mathrm{e}$, sue $\left.) \wedge \Re\left(\mathrm{e}^{\prime}, \mathrm{m}\right)\right] \quad$ Predicate Modification, Existential Closure (Rett, 2013, p. 1122-1123)

- In prose: there is a manner that characterizes John and Mary's dancing.

English vs. Dutch

- Presence of a PM (zo) in Dutch adjectival equatives correlates with degree readings, exactly as in English. A PM blocks property/manner readings; such readings are available without a PM.
- But crucially, presence of a PM in Dutch does not block manner readings in verbal equatives; in fact, it is degree readings that are blocked. This alone necessitates a different analysis of the PM zo.
- However one treats manner (semantic primitive or an emergent property from other primitives), a Predicate Modification analysis faces the difficulty of accounting for scope ambiguities in verbal equatives.

English vs. Dutch

- Presence of a PM (zo) in Dutch adjectival equatives correlates with degree readings, exactly as in English. A PM blocks property/manner readings; such readings are available without a PM.
- But crucially, presence of a PM in Dutch does not block manner readings in verbal equatives; in fact, it is degree readings that are blocked. This alone necessitates a different analysis of the PM zo.
- However one treats manner (semantic primitive or an emergent property from other primitives), a Predicate Modification analysis faces the difficulty of accounting for scope ambiguities in verbal equatives.

English vs. Dutch

- Presence of a PM (zo) in Dutch adjectival equatives correlates with degree readings, exactly as in English. A PM blocks property/manner readings; such readings are available without a PM.
- But crucially, presence of a PM in Dutch does not block manner readings in verbal equatives; in fact, it is degree readings that are blocked. This alone necessitates a different analysis of the PM zo.
- However one treats manner (semantic primitive or an emergent property from other primitives), a Predicate Modification analysis faces the difficulty of accounting for scope ambiguities in verbal equatives.
- Presence of a PM (zo) in Dutch adjectival equatives correlates with degree readings, exactly as in English. A PM blocks property/manner readings; such readings are available without a PM.
- But crucially, presence of a PM in Dutch does not block manner readings in verbal equatives; in fact, it is degree readings that are blocked. This alone necessitates a different analysis of the PM zo.
- However one treats manner (semantic primitive or an emergent property from other primitives), a Predicate Modification analysis faces the difficulty of accounting for scope ambiguities in verbal equatives.

Cross-Germanic Variation: German

- German is closely related to Dutch in terms of the morphosyntax of equatives; it uses a PM so and an SM wie, typically translated as being equivalent to the wh-word 'how'.
- Both so and wie are ambiguous between being anaphoric to kinds, degrees, and manners in non-equative contexts (Anderson and Morzycki, 2015; Umbach et al., 2022).
- In particular, the ambiguity of the PM so carries over to equative contexts.

Cross-Germanic Variation: German

- German is closely related to Dutch in terms of the morphosyntax of equatives; it uses a PM so and an SM wie, typically translated as being equivalent to the $w h$-word 'how'.
- Both so and wie are ambiguous between being anaphoric to kinds, degrees, and manners in non-equative contexts (Anderson and Morzycki, 2015; Umbach et al., 2022).
- In particular, the ambiguity of the PM so carries over to equative contexts.

Cross-Germanic Variation: German

- German is closely related to Dutch in terms of the morphosyntax of equatives; it uses a PM so and an SM wie, typically translated as being equivalent to the $w h$-word 'how'.
- Both so and wie are ambiguous between being anaphoric to kinds, degrees, and manners in non-equative contexts (Anderson and Morzycki, 2015; Umbach et al., 2022).
- In particular, the ambiguity of the PM so carries over to equative contexts.

Cross-Germanic Variation: German

- German is closely related to Dutch in terms of the morphosyntax of equatives; it uses a PM so and an SM wie, typically translated as being equivalent to the $w h$-word 'how'.
- Both so and wie are ambiguous between being anaphoric to kinds, degrees, and manners in non-equative contexts (Anderson and Morzycki, 2015; Umbach et al., 2022).
- In particular, the ambiguity of the PM so carries over to equative contexts.

German Adjectival Equatives

- German adjectival equatives permit both degree and property readings.
- The latter is best demonstrated with a non-gradable adjective; in English and Dutch, such uses are either ungrammatical or have a highly coerced (degree) reading along some gradable scale of prototypicality (x is as much a prototypical amphibian as y is) (Rett, 2013).
(33)

Nadine ist so gro β wie Anna.
Nadine is so tall WIE Anna
'Nadine is as tall as Anna.'
(degree)
(34) Freddie der Frosch ist so amphibisch wie Moritz der Molch.

Freddie the frog is so amphibian wIE Moritz the newt
'Fred the frog is amphibian in the same way Moritz the newt
is; they share all relevant amphibian properties.' (property)
(Hohaus and Zimmermann, 2021, p. 100-101)

German Adjectival Equatives

- German adjectival equatives permit both degree and property readings.

```
The latter is best demonstrated with a non-gradable
adjective; in English and Dutch, such uses are either ungrammatical
or have a highly coerced (degree) reading along some gradable scale of
prototypicality ( }x\mathrm{ is as much a prototypical amphibian as y is) (Rett,
2013)
(33)
    Nadine ist so gro\beta wie Anna.
    Nadine is so tall WIE Anna
    'Nadine is as tall as Anna.'
(34) Freddie der Frosch ist so amphibisch wie Moritz der Molch.
Freddie the frog is so amphibian wIE Moritz the newt
'Fred the frog is amphibian in the same way Moritz the newt
is; they share all relevant amphibian properties.' (property)
    (Hohaus and Zimmermann, 2021, p. 100-101)
```


German Adjectival Equatives

- German adjectival equatives permit both degree and property readings.
- The latter is best demonstrated with a non-gradable adjective; in English and Dutch, such uses are either ungrammatical or have a highly coerced (degree) reading along some gradable scale of prototypicality (x is as much a prototypical amphibian as y is) (Rett, 2013).

German Adjectival Equatives

- German adjectival equatives permit both degree and property readings.
- The latter is best demonstrated with a non-gradable adjective; in English and Dutch, such uses are either ungrammatical or have a highly coerced (degree) reading along some gradable scale of prototypicality (x is as much a prototypical amphibian as y is) (Rett, 2013).
(33) Nadine ist so gro β wie Anna.

Nadine is so tall wie Anna
'Nadine is as tall as Anna.'
Freddie der Frosch ist so amphibisch wie Moritz der Molch.
Freddie the frog is so amphibian wie Moritz the newt
'Fred the frog is amphibian in the same way Moritz the newt
is; they share all relevant amphibian properties.
(Hohaus and Zimmermann, 2021, p. 100-101)

German Adjectival Equatives

- German adjectival equatives permit both degree and property readings.
- The latter is best demonstrated with a non-gradable adjective; in English and Dutch, such uses are either ungrammatical or have a highly coerced (degree) reading along some gradable scale of prototypicality (x is as much a prototypical amphibian as y is) (Rett, 2013).
(33) Nadine ist so gro β wie Anna.

Nadine is so tall WIE Anna
'Nadine is as tall as Anna.'
(34) Freddie der Frosch ist so amphibisch wie Moritz der Molch. Freddie the frog is so amphibian wie Moritz the newt 'Fred the frog is amphibian in the same way Moritz the newt is; they share all relevant amphibian properties.' (property) (Hohaus and Zimmermann, 2021, p. 100-101)

German Verbal Equatives

- German verbal equatives with so are similarly ambiguous between a manner and degree reading.
- This is best illustrated with degree achievement verbs, assuming a degree argument is available at some point in the semantic composition (e.g., Kennedy and Levin, 2008) (cf. Dutch (25) and English discussed in Rett, 2013).
(35) Wir haben die pizza so abgekühlt wie die lasagn.
we have the pizza so cooled WIE the lasagne
'We cooled the pizza as we cooled the lasagne.'
a. Nämlich durch Pusten.
namely through blow
'Namely through blowing on it.'
b. Nämlich auf 21 grad raumtemperatur.
namely to 21 degrees room.temperature
'Namely to 21 degrees.'
(Hohaus and Zimmermann, 2021, p. 101-102)

German Verbal Equatives

- German verbal equatives with so are similarly ambiguous between a manner and degree reading.
This is best illustrated with degree achievement verbs,
assuming a degree argument is available at some point in the semantic composition (e.g., Kennedy and Levin, 2008) (cf. Dutch (25) and English discussed in Rett, 2013).

```
(35)
Wir haben die pizza so abgekühlt wie die lasagn.
we have the pizza so cooled WIE the lasagne
'We cooled the pizza as we cooled the lasagne.'
a. Nämlich durch Pusten.
    namely through blow
    'Namely through blowing on it.
b. Nämlich auf 21 grad raumtemperatur.
    namely to 21 degrees room.temperature
    'Namely to 21 degrees.'
(Hohaus and Zimmermann, 2021, p. 101-102)
```


German Verbal Equatives

- German verbal equatives with so are similarly ambiguous between a manner and degree reading.
- This is best illustrated with degree achievement verbs, assuming a degree argument is available at some point in the semantic composition (e.g., Kennedy and Levin, 2008) (cf. Dutch (25) and English discussed in Rett, 2013).

(Hohaus and Zimmermann, 2021, p. 101-102)

German Verbal Equatives

- German verbal equatives with so are similarly ambiguous between a manner and degree reading.
- This is best illustrated with degree achievement verbs, assuming a degree argument is available at some point in the semantic composition (e.g., Kennedy and Levin, 2008) (cf. Dutch (25) and English discussed in Rett, 2013).
(35) Wir haben die pizza so abgekühlt wie die lasagn. we have the pizza so cooled wie the lasagne 'We cooled the pizza as we cooled the lasagne.'
a. Nämlich durch Pusten.
namely through blow
'Namely through blowing on it.'
b. Nämlich auf 21 grad raumtemperatur. namely to 21 degrees room.temperature 'Namely to 21 degrees.'
(Hohaus and Zimmermann, 2021, p. 101-102)

German PM as a (Partially) Type-Neutral Quantifier

- Simplifying somewhat, the ambiguity observed above leads Hohaus and Zimmermann (2021) to propose that so is a quantifier that can quantify over either degrees (gradable adjectives) or properties (of individuals or events). (36)

- The composition of German equatives with so proceeds then in familiar fashion from the comparatives literature (QR, LAMBDA Abstraction), supported by familiar evidence (e.g., scope ambiguities), whether nominal, adjectival, or verbal equatives.

German PM as a (Partially) Type-Neutral Quantifier

- Simplifying somewhat, the ambiguity observed above leads Hohaus and Zimmermann (2021) to propose that so is a quantifier that can quantify over either degrees (gradable adjectives) or properties (of individuals or events).
familiar fashion from the comparatives literature (QR, LAMBDA
AbSTRACTION), supported by familiar evidence (e.g., scope
ambiguities), whether nominal, adjectival, or verbal equatives.

German PM as a (Partially) Type-Neutral Quantifier

- Simplifying somewhat, the ambiguity observed above leads Hohaus and Zimmermann (2021) to propose that so is a quantifier that can quantify over either degrees (gradable adjectives) or properties (of individuals or events).
a. \llbracket soproperty $_{\text {pron }}: \lambda \mathrm{R}_{\text {et,t }} \cdot \lambda \mathrm{R}^{\prime}{ }_{\text {et }, t \cdot}\{\mathrm{f}: \mathrm{R}(\mathrm{f})=1\} \subseteq\left\{\mathrm{f}^{\prime}: \mathrm{R}^{\prime}\left(\mathrm{f}^{\prime}\right)=1\right\}$
b. \llbracket so degree $\rrbracket: ~ \lambda \mathrm{D}_{d t} \cdot \lambda \mathrm{D}^{\prime}{ }_{d t} .\{\mathrm{d}: \mathrm{D}(\mathrm{d})=1\} \subseteq\left\{\mathrm{d}^{\prime}: \mathrm{D}^{\prime}\left(\mathrm{d}^{\prime}\right)=1\right\}$
c. \llbracket so $_{\text {event-property }} \rrbracket: ~ \lambda \mathrm{R}_{v t, t} \cdot \lambda \mathrm{R}^{\prime}{ }_{v t, t} \cdot\{\mathrm{f}: \overline{\mathrm{R}}(\mathrm{f})=1\} \subseteq\left\{\mathrm{f}^{\prime}: \mathrm{R}^{\prime}\left(\mathrm{f}^{\prime}\right)=1\right\}$
(Hohaus and Zimmermann, 2021, p. 122-125)
The composition of German equatives with so proceeds then in familiar fashion from the comparatives literature (QR, LAMBDA Abstraction), supported by familiar evidence (e.g., scope ambiguities), whether nominal, adjectival, or verbal equatives.

German PM as a (Partially) Type-Neutral Quantifier

- Simplifying somewhat, the ambiguity observed above leads Hohaus and Zimmermann (2021) to propose that so is a quantifier that can quantify over either degrees (gradable adjectives) or properties (of individuals or events).

a.	$\llbracket o_{\text {property }} \rrbracket$: $\lambda \mathrm{R}_{\text {et }, t,} \cdot \lambda \mathrm{R}^{\prime}$ et,, . $\{\mathrm{f}: \mathrm{R}(\mathrm{f})=1\} \subseteq\left\{\mathrm{f}^{\prime}: \mathrm{R}^{\prime}\left(\mathrm{f}^{\prime}\right)=1\right\}$
b.	$\llbracket s_{\text {degree }} \rrbracket: \lambda \mathrm{D}_{d t} \cdot \lambda \mathrm{D}^{\prime}{ }_{d t} \cdot\{\mathrm{~d}: \mathrm{D}(\mathrm{d})=1\} \subseteq\left\{\mathrm{d}^{\prime}: \mathrm{D}^{\prime}\left(\mathrm{d}^{\prime}\right)=1\right\}$
c.	$o_{\text {event-property }} \rrbracket: \lambda \mathrm{R}_{v t, t} \cdot \lambda \mathrm{R}{ }^{\prime}{ }_{v t, t} .\{\mathrm{f}: \overline{\mathrm{R}}(\mathrm{f})=1\} \subseteq\left\{\mathrm{f}^{\prime}: \mathrm{R}^{\prime}\left(\mathrm{f}{ }^{\prime}\right)=1\right\}$

(Hohaus and Zimmermann, 2021, p. 122-125)

- The composition of German equatives with so proceeds then in familiar fashion from the comparatives literature (QR, LAMBDA Abstraction), supported by familiar evidence (e.g., scope ambiguities), whether nominal, adjectival, or verbal equatives.

German vs. Dutch

- German and Dutch pattern together morpho-syntactically; PMs are used across all types of equatives regardless of syntactic category of the parameter.
- Nonetheless, even if the PMs are clearly historically related and have the same distribution, the distribution of degree versus manner readings crucially differ.
- An analysis of Dutch zo as a type-neutral quantifier along the lines of German so will face the challenge of trying to rule out the property version with adjectival equatives, and the degree version with verbal equatives involving a degree achievement verb parameter.

German vs. Dutch

- German and Dutch pattern together morpho-syntactically; PMs are used across all types of equatives regardless of syntactic category of the parameter.
- Nonetheless, even if the PMs are clearly historically related and have the same distribution, the distribution of degree versus manner readings crucially differ.
An analysis of Dutch zo as a type-neutral quantifier along the lines of German so will face the challenge of trying to rule out the property version with adjectival equatives, and the degree version with verbal equatives involving a degree achievement verb parameter.
- German and Dutch pattern together morpho-syntactically; PMs are used across all types of equatives regardless of syntactic category of the parameter.
- Nonetheless, even if the PMs are clearly historically related and have the same distribution, the distribution of degree versus manner readings crucially differ.
- An analysis of Dutch zo as a type-neutral quantifier along the lines of German so will face the challenge of trying to rule out the property version with adjectival equatives, and the degree version with verbal equatives involving a degree achievement verb parameter.
- German and Dutch pattern together morpho-syntactically; PMs are used across all types of equatives regardless of syntactic category of the parameter.
- Nonetheless, even if the PMs are clearly historically related and have the same distribution, the distribution of degree versus manner readings crucially differ.
- An analysis of Dutch $z o$ as a type-neutral quantifier along the lines of German so will face the challenge of trying to rule out the property version with adjectival equatives, and the degree version with verbal equatives involving a degree achievement verb parameter.

Conclusions

- Proposal: PM zo compositionally introduces kinds and asserts its complement instantiates a kind that is a distinguished property, SM als is an equative quantifier over kinds.
- While there are independent syntactic differences between adjectives and verbs in their internal syntax and zo's categorial status, the proposed semantics is cross-categorial and identical across adjectival and verbal equatives.
- Distribution of degree versus manner readings across syntactic categories arises from what count as distinguished properties of states versus events.
- Supporting evidence: zo has anaphoric pro-form uses in non-equative contexts, distribution of degree and manner readings is identical across non-equative and equative contexts, scope ambiguities observed with both adjectival and verbal equatives.
- Proposal: PM zo compositionally introduces kinds and asserts its complement instantiates a kind that is a distinguished property, SM als is an equative quantifier over kinds.
and verbs in their internal syntax and zo's categorial status, the proposed semantics is cross-categorial and identical across adjectival and verbal equatives.
- Distribution of degree versus manner readings across syntactic categories arises from what count as distinguished properties of states versus events.

Supporting evidence: zo has anaphoric pro-form uses in non-equative contexts, distribution of degree and manner readings is identical across non-equative and equative contexts, scope ambiguities observed with both adjectival and verbal equatives.

- Proposal: PM zo compositionally introduces kinds and asserts its complement instantiates a kind that is a distinguished property, SM als is an equative quantifier over kinds.
- While there are independent syntactic differences between adjectives and verbs in their internal syntax and $z o$'s categorial status, the proposed semantics is cross-categorial and identical across adjectival and verbal equatives.

Distribution of degree versus manner readings across syntactic categories arises from what count as distinguished properties of states versus events.

Supporting evidence: zo has anaphoric pro-form uses in
non-equative contexts, distribution of degree and manner
readings is identical across non-equative and equative
contexts, scope ambiguities observed with both adjectival and verbal equatives.

- Proposal: PM zo compositionally introduces kinds and asserts its complement instantiates a kind that is a distinguished property, SM als is an equative quantifier over kinds.
- While there are independent syntactic differences between adjectives and verbs in their internal syntax and $z o$'s categorial status, the proposed semantics is cross-categorial and identical across adjectival and verbal equatives.
- Distribution of degree versus manner readings across syntactic categories arises from what count as distinguished properties of states versus events.

Supporting evidence: zo has anaphoric pro-form uses in non-equative contexts, distribution of degree and manner readings is identical across non-equative and equative contexts, scope ambiguities observed with both adjectival and verbal equatives.

- Proposal: PM zo compositionally introduces kinds and asserts its complement instantiates a kind that is a distinguished property, SM als is an equative quantifier over kinds.
- While there are independent syntactic differences between adjectives and verbs in their internal syntax and $z o$'s categorial status, the proposed semantics is cross-categorial and identical across adjectival and verbal equatives.
- Distribution of degree versus manner readings across syntactic categories arises from what count as distinguished properties of states versus events.
- Supporting evidence: zo has anaphoric pro-form uses in non-equative contexts, distribution of degree and manner readings is identical across non-equative and equative contexts, scope ambiguities observed with both adjectival and verbal equatives.

Conclusions

- A (brief) survey of two other Germanic languages, English and German, demonstrate that these languages do not necessarily completely align in their morphosyntax and morphosemantics of equatives.
- Dutch patterns with German in its morphosyntax; both adjectival and verbal equatives are marked with PMs. This differs from English which has no PMs in verbal equatives.
- Conversely, Dutch patterns with English in the distribution of degree versus manner readings; adjectival equatives with PMs only have degree readings, verbal equatives (with or without PMs and independent of the verb) only have matmer readings. This differs from German, where degree and property/manner readings are both available depending on the parameter.
- This therefore necessitates a non-unified analysis of equatives even within the Germanic family; different semantic primitives are needed in the analyses of PMs in these languages to account for the morphosyntax and distribution of readings.

Conclusions

- A (brief) survey of two other Germanic languages, English and German, demonstrate that these languages do not necessarily completely align in their morphosyntax and morphosemantics of equatives.
> - Dutch patterns with German in its morphosyntax; both adjectival and verbal equatives are marked with PMs. This differs from English which has no PMs in verbal equatives.

> Conversely, Dutch patterns with English in the distribution of degree versus manner readings; adjectival equatives with PMs only have degree readings, verbal equatives (with or without PMs and independent of the verb) only have manner readings. This differs from German, where degree and property/manner readings are both available depending on the parameter This therefore necessitates a non-unified analysis of equatives even within the Germanic family; different semantic primitives are needed in the analyses of PMs in these languages to account for the morphosyntax and distribution of readings.

Conclusions

- A (brief) survey of two other Germanic languages, English and German, demonstrate that these languages do not necessarily completely align in their morphosyntax and morphosemantics of equatives.
- Dutch patterns with German in its morphosyntax; both adjectival and verbal equatives are marked with PMs. This differs from English which has no PMs in verbal equatives.
> - Conversely, Dutch patterns with English in the distribution of degree versus manner readings; adjectival equatives with PMs only have degree readings, verbal equatives (with or without PMs and independent of the verb) only have manner readings. This differs from German, where degree and property/manner readings are both available depending on the parameter This therefore necessitates a non-unified analysis of equatives even within the Germanic family; different semantic primitives are needed in the analyses of PMs in these languages to account for the morphosyntax and distribution of readings.

Conclusions

- A (brief) survey of two other Germanic languages, English and German, demonstrate that these languages do not necessarily completely align in their morphosyntax and morphosemantics of equatives.
- Dutch patterns with German in its morphosyntax; both adjectival and verbal equatives are marked with PMs. This differs from English which has no PMs in verbal equatives.
- Conversely, Dutch patterns with English in the distribution of degree versus manner readings; adjectival equatives with PMs only have degree readings, verbal equatives (with or without PMs and independent of the verb) only have manner readings. This differs from German, where degree and property/manner readings are both available depending on the parameter.
This therefore necessitates a non-unified analysis of equatives even within the Germanic family; different semantic primitives are needed in the analyses of PMs in these languages to account for the morphosyntax and distribution of readings.

Conclusions

- A (brief) survey of two other Germanic languages, English and German, demonstrate that these languages do not necessarily completely align in their morphosyntax and morphosemantics of equatives.
- Dutch patterns with German in its morphosyntax; both adjectival and verbal equatives are marked with PMs. This differs from English which has no PMs in verbal equatives.
- Conversely, Dutch patterns with English in the distribution of degree versus manner readings; adjectival equatives with PMs only have degree readings, verbal equatives (with or without PMs and independent of the verb) only have manner readings. This differs from German, where degree and property/manner readings are both available depending on the parameter.
- This therefore necessitates a non-unified analysis of equatives even within the Germanic family; different semantic primitives are needed in the analyses of PMs in these languages to account for the morphosyntax and distribution of readings.

References I

Alrenga, P. and Kennedy, C. (2014). No more shall we part: Quantifiers in English comparatives. Natural Language Semantics, 22:1-53.
Alrenga, P., Kennedy, C., and Merchant, J. (2012). A new standard of comparison. In Arnett, N. and Bennett, R., editors, Proceedings of the 30th West Coast Conference on Formal Linguistics, pages 32-42. Somerville, MA: Cascadilla Proceedings Project.
Anderson, C. and Morzycki, M. (2015). Degrees as kinds. Natural Language 8 Linguistic Theory, 33:791-828.
Chierchia, G. (1998). Reference to kinds across languages. Natural Language Semantics, 6(4):339-405.
Corver, N. (1997). The internal syntax of the Dutch extended adjectival projection. Natural Language \& Linguistic Theory, 15:289-368.
Corver, N. (2018). The freezing points of the (Dutch) adjectival system. In Hartmann, J. et al., editors, Freezing: Theoretical approaches and empirical domains, pages 143-194. De Gruyter Mouton.
Cresswell, M. (1976). The semantics of degree. In Partee, B., editor, Montague Grammar, pages 261-292. New York: Academic Press.
Fox, D. and Nissenbaum, J. (1999). Extraposition and scope: A case for overt QR. In Bird, S., Carnie, A., Haugen, J., and Norquest, P., editors, Proceedings of WCCFL 18, pages 132-144. Cascadilla Press.

Haspelmath, M. and Buchholz, O. (1998). Equative and similative constructions in the languages of Europe. In van der Auwera, J. and Ó Baoill, D., editors, Adverbial constructions in the languages of Europe, pages 277-334. Berlin: Mouton de Gruyter.
Heim, I. (1985). Notes on comparatives and related matters. Ms., University of Texas, Austin.
Heim, I. (2000). Degree operators and scope. In Jackson, B. and Matthews, T., editors, Proceedings of the 10th Semantics and Linguistic Theory conference, pages 40-64. Ithaca: Cornell University.
Heim, I. (2006). Remarks on comparative clauses as generalized quantifiers. Ms., Massachusetts Institute of Technology.
Hohaus, V. and Zimmermann, M. (2021). Comparisons of equality with German so...wie, and the relationship between degrees and properties. Journal of Semantics, 38:95-143.
Kennedy, C. and Levin, B. (2008). Measure of change: The adjectival core of degree achievements. In McNally, L. and Kennedy, C., editors, Adjectives and adverbs: Syntax, semantics and discourse, pages 156-182. Oxford: Oxford University Press.

References II

Penka, D. (2016). Degree equatives: The same as comparatives? Presented at Equative Constructions Workshop, Universität zu Köln.

Rett, J. (2013). Similatives and the argument structure of verbs. Natural Language \mathcal{E} Linguistic Theory, 31:1101-1137.

Rett, J. (2020). Separate but equal: A typology of equative constructions. In Hallman, P., editor, Interactions of degree and quantification, pages 163-204. Boston: Brill.
Schwarzchild, R. (2013). Degrees and segments. In Snider, T., editor, Proceedings of SALT 23, pages 212-238. CLC Publications, Cornell University, Ithaca: NY.

Umbach, C., Hinterwimmer, S., and Gust, H. (2022). German wie-complements: Manners, methods and events in progress. Natural Language $\&$ Linguistic Theory, 40:307-343.
Wellwood, A. (2015). On the semantics of comparison across categories. Linguistics \& Philosophy, 38:67-101.

- While the proposed analysis largely follows Anderson and Morzycki (2015), we differ in what introduces quantificational semantics. Proposal for Dutch: the SM als is a quantifier over kinds.
- Anderson and Morzycki (2015) do not propose a dedicated quantifier over kinds.
- Rather, they assume that type-shifting rules apply to the standard clause to resolve type-mismatches with the kind-introducing PM in equatives.
- This is motivated in part by the language they investigate in detail: Polish.
- In Polish, the PM appears to be tak, and the standard is marked by $\boldsymbol{j a k}$, which is typically translated as a $w h$-word that is ambiguous between degree and manner much like German wie.
(37) Floyd jest tak wysoki jak Clyde. Floyd is taK tall wh Clyde 'Floyd is as tall as Clyde.'
(38) Floyd śpiewał tak jak Clyde śpiewał. Floyd sang taK wh Clyde sang 'Floyd sang as Clyde sang.'
(Anderson and Morzycki, 2015, p. 816-817)

Appendix: Type-Shifting the Standard Clause

- Anderson and Morzycki (2015) note the morphological similarity between tak and jak in Polish; taking this seriously, they assume both to be elements that introduce kinds.
(39) a. $\llbracket t a k \rrbracket: \lambda \mathrm{k} \cdot \lambda \mathrm{o} .{ }^{\cup} \mathrm{k}(\mathrm{o})$
b. $\quad \llbracket j a k \rrbracket: \lambda \mathrm{k} \cdot \lambda \mathrm{o} .{ }^{\cup} \mathrm{k}(\mathrm{o})$
- The standard clause in both adjectival and verbal equatives therefore denotes predicates of kinds.

Appendix：Type－Shifting the Standard Clause

a．Floyd jest tak wysoki $\boldsymbol{j a k}$ Clyde． Floyd is taK tall wh Clyde ＇Floyd is as tall as Clyde．＇
b．【 $\lambda \mathrm{k}$ jest［AP［DegP jak k Clyde $]$ ］： $\lambda \mathrm{k} . \exists \mathrm{s}\left[\operatorname{TALL}(\mathrm{s}\right.$, clyde $) \wedge \mathrm{k}^{\mathrm{k}(\mathrm{s})]}$
a．Floyd śpiewał tak $\boldsymbol{j} \boldsymbol{a} \boldsymbol{k}$ Clyde śpiewał．
Floyd sang TAK WH Clyde sang
＇Floyd sang as Clyde sang．＇
b．【 $\lambda \mathrm{k}$ jak k Clyde śpiewat ］】：
$\lambda \mathrm{k} . \exists \mathrm{e}\left[\operatorname{SING}(\mathrm{e}\right.$, clyde $\left.) \wedge{ }^{\cup} \mathrm{k}(\mathrm{e})\right]$

Appendix: Type-Shifting the Standard Clause

- Assuming the standard analysis in the comparatives literature that the standard clause is a complement of the degree morpheme, the predicate of kinds denoted by the standard clauses are assumed to be complements to tak, which requires a kind as its first argument.
- This is the familiar type-mismatch problem; however, the standard clause is not a quantifier in the analysis and therefore cannot undergo QR.
- At this point of the composition, Anderson and Morzycki (2015) assume that type-shifting rules apply to resolve such a type-mismatch. Two rules such rules are widely assumed in the literature: Iota Shift or Existential Closure Shift.

Appendix: Type-Shifting the Standard Clause

$$
\begin{align*}
& \text { Iota Shift (from }<\tau, \mathrm{t}>\text { to } \tau \text {, where } \tau \text { is any atomic type): } \tag{42}\\
& \text { shift } \mathrm{P}_{\tau t} \text { to } \iota \mathrm{x}_{\tau}[\mathrm{P}(\mathrm{x})] \\
& \text { (preferred when defined) } \\
& \text { Existential Closure Shift (from }<\tau, \mathrm{t}>\text { to } \ll \tau, \mathrm{t}>, \mathrm{t}>\text {): } \tag{43}\\
& \text { shift } \mathrm{P}_{\tau t} \text { to } \lambda \mathrm{Q}_{\tau t} \cdot \exists \mathrm{x}_{\tau}[\mathrm{P}(\mathrm{x}) \wedge \mathrm{Q}(\mathrm{x})] \\
& \text { (dispreferred) }
\end{align*}
$$

(Anderson and Morzycki, 2015, p. 814)

- With that much in place, Anderson and Morzycki (2015) suggest that different type-shifting rules are employed in adjectival and verbal equatives.
- The default Iota Shift is employed in the standard clause of adjectival equatives.
- This is because with degree state kinds, there is indeed a unique state kind that any state instantiates, namely, the equivalence class of states (degrees) that it is a member of.
- Iota Shift, is however, undefined with verbal equatives; there is no unique kind or manner that an event instantiates. EXISTENTIAL Closure Shift is employed for verbal equatives instead.

Appendix：Type－Shifting the Standard Clause

－Adjectival equatives：
（44）Floyd jest tak wysoki jak Clyde．
Floyd is tak tall wh Clyde
＇Floyd is as tall as Clyde．＇
a．【 $\lambda \mathrm{k}$ jest $[$ AP $[$ DegP $j a k k$ Clyde wysokit $] \rrbracket$ ：

```
    k. \existss[TALL(s,clyde) ^ \cup k(s)]
b．【SHIFT \(\lambda \mathrm{k}\) jest［AP［DegP jak \(k\) Clyde wysoki ］】：
\(\iota \mathrm{k}[\exists \mathrm{s}[\operatorname{TALL}(\mathrm{s}\), clyde \() \wedge \cup \mathrm{k}(\mathrm{s})]] \quad\)（shift standard clause）
c．【［tak SHIFT \(\lambda \mathrm{k}\)［AP［DegP jak \(k\) Clyde入o．\(\cup \iota \mathrm{k}\left[\exists \mathrm{s}\left[\operatorname{TALL}(\mathrm{s}\right.\right.\), clyde \() \wedge \cup_{\mathrm{k}(\mathrm{s})]](\mathrm{o}) \quad \text {（tak complement）}) ~}^{\text {a }}\)
d．【Floyd jest wysoki】：\(\lambda \mathrm{s}\)＇．TALL（s，floyd）（matrix clause）
e．\(\llbracket[\) tak SHIFT \(\lambda \mathrm{k}\) jest［AP［DegP jak \(k\) Clyde wysoki \(]\) ］［ Floyd jest wysoki ］】：
\[
\lambda \mathrm{s}^{\prime} . \operatorname{TALL}(\mathrm{s}, \text { floyd }) \wedge \cup^{\cup} \mathrm{k}\left[\exists \mathrm { s } \left[\operatorname{TALL}(\mathrm{~s}, \text { clyde }) \wedge \cup_{\mathrm{k}(\mathrm{~s})]]\left(\mathrm{s}^{\prime}\right)}\right.\right.
\]
－In prose：Floyd＇s tallness state instantiates the unique degree state kind that Clyde＇s tallness instantiates．

\section*{Appendix：Type－Shifting the Standard Clause}
－Verbal equatives：
（45）Floyd śpiewał tak jak Clyde śpiewat．
Floyd sang taK wh Clyde sang
＇Floyd sang as Clyde sang．＇
a．\(\quad \llbracket \lambda \mathrm{k}[\) jak \(k\) Clyde śpiewat \(] \rrbracket: \lambda \mathrm{k} . \exists \mathrm{e}\left[\operatorname{sing}(\mathrm{e}\right.\), clyde \(\left.) \wedge{ }^{\cup} \mathrm{k}(\mathrm{e})\right]\) （standard clause）
b．【SHift \(\lambda \mathrm{k}\) jak \(k\) Clyde śpiewat ］】： \(\lambda \mathrm{Q} . \exists \mathrm{k}\left[\exists \mathrm{e}\left[\operatorname{sing}(\mathrm{e}\right.\right.\), clyde \(\left.\left.) \wedge \cup_{\mathrm{k}}(\mathrm{e})\right] \wedge \mathrm{Q}(\mathrm{k})\right]\)（shift standard clause）
c．【 \(\lambda \mathrm{k}^{\prime}\)［ Floyd śpiewat tak \(\left.k^{\prime}\right] \rrbracket\) ！\(\lambda \mathrm{k}^{\prime}\) ．ヨe＇\(\left[\operatorname{sing}(\mathrm{e}\right.\), floyd \(\left.) \wedge^{\cup} \mathrm{k}^{\prime}\left(\mathrm{e}^{\prime}\right)\right]\) （matrix clause after QR of standard clause）
d．\(\llbracket\) SHIFT \(\lambda \mathrm{k}\) jak \(k\) Clyde śpiewat \(] \rrbracket\left(\llbracket \lambda \mathrm{k}^{\prime}\left[\right.\right.\) Floyd śpiewat tak \(\left.\left.k^{\prime}\right] \rrbracket\right)\) ： \(\exists \mathrm{k}\left[\exists \mathrm{e}\left[\operatorname{SING}(\mathrm{e}\right.\right.\), clyde \(\left.) \wedge \cup_{\mathrm{k}}(\mathrm{e})\right] \wedge \exists \mathrm{e}^{\prime}\left[\operatorname{SING}(\mathrm{e}\right.\), floyd \(\left.\left.) \wedge \cup^{\mathrm{V}}\left(\mathrm{e}^{\prime}\right)\right]\right]\)
－In prose：there is a manner kind which both Floyd＇s singing and Clyde＇s singing instantiates．
- Anderson and Morzycki's analysis involving type-shifting leads to several consequences. First, in adjectival equatives the standard clause is effectively a degree (state kind) definite description (see e.g., Penka, 2016 for German). That means it is interpreted in-situ and does not undergo QR.
- QR is motivated only for verbal equatives. In addition, verbal equatives involve existential quantification over manners (event kinds).
- It is clear that the analysis cannot apply to Dutch because of two predictions (it is an empirical question if these hold in Polish).
- Prediction I: since the standard clause in adjectival equatives is a degree definite description interpreted in-situ, it should not show any kind of scopal interactions with other scope-taking elements.
- This, of course, seems to not be borne out in Dutch adjectival equatives, which exhibits scope ambiguities with matrix modal verbs (27).
- In fact, Anderson and Morzycki (2015) provide the same analysis for comparatives, where the presence of scope ambiguities is well-established (in English) since Heim (1985, 2000, 2006).

Appendix: Type-Shifting the Standard Clause
- Prediction II: Verbal equatives in their analysis do involve an existential quantifier and therefore, QR and scope-taking. This, however, predicts rather weak truth conditions for verbal equatives; two events need only share a manner in which it is carried out to satisfy this, e.g., (45-d).
- This is, in fact, the same prediction made by Rett's analysis for English, which involves Predicate Modification of two sets of manners and then Existential Closure of the manner variable.
- Two further consequences follow from a meaning built on existential quantifcation over manners.

\section*{Appendix: Type-Shifting the Standard Clause}
- First, we expect that the context below, which makes explicit that the two events involve just one manner in common, to be felicitiously described by the (English) verbal equative, which does not seem to be borne out.
(46) Context: Floyd and Clyde both sang at the party last night. Floyd sang really melodically and slowly. Clyde sang melodically as well, though he sang really hurriedly.
a. \#? Floyd sang as Clyde sang.
b. \#? Clyde sang as Floyd sang.

\section*{Appendix: Type-Shifting the Standard Clause}
- Rather, a stronger meaning seems to be described by the verbal equative; it requires the comparee event to have at least all of the same manners of the standard event, if not more.
- In other words, this is the sub-set relation, as has been standardly assumed for equative quantifiers and also adopted here for Dutch.
(47) Context: Floyd and Clyde both sang at the party last night. Clyde sang really melodically and slowly. Floyd sang really melodically and slowly too, but also really goofily.
a. Floyd sang as Clyde sang (though Floyd also sang goofily). b. ??Clyde sang as Floyd sang (though Floyd also sang goofily).

\section*{Appendix: Type-Shifting the Standard Clause}
- Finally, even if there is QR of the existential quantifier over kinds in Anderson and Morzycki's analysis, it is unclear if it would explain the scope ambiguity in verbal equatives, as in Dutch (28) or in German (Hohaus and Zimmermann, 2021).
- Again, this seems to be because existential quantification seems too weak to capture the relevant interpretations.

\section*{Appendix: Type-Shifting the Standard Clause}
- Even with QR, the relevant interpretations seem indistinguishable, which is not what is observed in Dutch, where two distinct interpretations are available.
(48) Context: A foreign colleague can spend their research funds on equipment, books, and conference travel. She asks about how I may spend my funds and I reply...

Ik mag mijn beurs exact \(\boldsymbol{z o}<\boldsymbol{a l s}\) jij> gebruiken \(<\boldsymbol{a l s}\) jij>. I may my funding exactly zo alS you use alS you
'I may spend my funds in exactly the same way as you.'
a. \(\exists \mathrm{w}^{\prime}\left[\mathrm{wR} \mathrm{w}^{\prime} \wedge \exists \mathrm{k}\left[\right.\right.\) colleague spends her funds in k -manner in \(\mathrm{w}^{\prime} \wedge\) I spend my funds in k-manner in w'], i.e., some world where we happen to spend funds identically
b. \(\quad \exists \mathrm{k}\) [colleague uses her funds in k -manner in \(\mathrm{w} \wedge \exists \mathrm{w} ’\left[\mathrm{wRw}^{\prime} \wedge \mathrm{I}\right.\) spend my funds in k -manner in \(\mathrm{w}^{\prime}\) ], i.e., there is some k -manner colleague spends her funds and there is some world I spend my funds in k -manner```


[^0]:    【(1) ${ }_{1}^{\text {1 }\}}:\left\{\mathrm{k}: \exists \mathrm{s}\left[\operatorname{TALL}(\mathrm{s}\right.\right.$, sue $\left.\left.) \wedge{ }^{\cup} \mathrm{k}(\mathrm{s})\right]=1\right\} \subseteq\left\{\mathrm{k}^{\prime}: \exists \mathrm{s}^{\prime}\left[\operatorname{TALL}\left(\mathrm{s}^{\prime}, j a n\right) \wedge{ }^{\cup^{\prime}} \mathrm{k}^{\prime}\left(\mathrm{s}^{\prime}\right)\right]=\right.$
    'the set of state kinds Sue's height instantiates is a subset of the set of state kinds John's height instantiates'

