On the representational complexity of silence and its morphosyntactic benefits

Edoardo Cavirani

CRISSP KU Leuven

Phex 13 February 12, 2023

Music is in the space between the notes

Claude Debussy/Miles Davis

Language is in the space between audible objects

- Language as the set of conditions holding over the atoms of linguistic representations
- Such atoms do not necessarily need to have an audible counterpart
- Their presence can be argued for on the basis of indirect evidence and/or theory-internal requirements
 - Analogies with overt forms, θ -criterion ...
 - $V \sim \emptyset$ alternation, ECP ...

Inaudible objects

- Morphosyntax
 - Formal features, functional heads (Kayne 2016)
 - Ellipsis sites
 - Lexically silent items (PRO, pro, zero morphemes ...)
- Phonology
 - Substance-free phonological features
 - 'Reduction' sites
 - **Lexically silent items/prosodic nodes (C, V, N, R,** σ)

Inaudible objects

- Morphosyntax
 - Formal features, functional heads (Kayne 2016)
 - Ellipsis sites
 - Lexically silent items (PRO, pro, zero morphemes ...)
- Phonology
 - Substance-free phonological features
 - 'Reduction' sites
 - Lexically silent items/prosodic nodes (C, V, N, R, σ)

Inaudible objects

- Morphosyntax
 - Formal features, functional heads (Kayne 2016)
 - Ellipsis sites
 - Lexically silent items (PRO, pro, zero morphemes ...)
- Phonology
 - Substance-free phonological features
 - 'Reduction' sites
 - Lexically silent items/prosodic nodes (C, V, N, R, σ)

The lexical item

In the simplest case, the entry LI is a once-and-for-all collection (perhaps structured) of (A) phonological, (B) semantic, and (C) formal features. The features of (A) are accessed in the phonological component, ultimately yielding a PF-interface representation; those of (B) are interpreted at LF; and those of (C) are accessible in the course of the narrow-syntactic derivation

Chomsky (1999)

- Semantic & phonological features
 - hello, ouch, yes ... (Jackendoff 2002)
- Syntactic & phonological features
 - Expletives
 - Relators and linkers
 - *do*-support
- Semantic & syntactic features
 - Functional heads
 - PRO, pro, zero morphemes ...

the lexicon may contain a number of grammatical formatives that happen to lack phonetic content

van Rimsdijk (2002)

lacksquare Absence of phonetic content = absence of phonological content

the lexicon may contain a number of grammatical formatives that happen to lack phonetic content

van Rimsdijk (2002)

- Absence of phonetic content = absence of phonological content
- Phonology = phonetics
- Modularity violation
 - Phonology = formal properties of mind-internal objects
 - Phonetics = physical properties of externalized objects

the lexicon may contain a number of grammatical formatives that happen to lack phonetic content

van Rimsdijk (2002)

- Absence of phonetic content = absence of phonological content
- Phonology = phonetics
- Modularity violation
 - Phonology = formal properties of mind-internal objects
 - Phonetics = physical properties of externalized objects

- If phonetics \neq phonology, then
- Absence of phonetic content \neq absence of phonological content
- Phonetic silence ≠ phonological emptiness
- Zero morphemes ≠ silent morphemes
- Zero morphemes can have some phonological content

- Proposal
 - Silence and phonological emptiness are not the same thing
 - Silence can conceal morphophonological complexity
 - Morphosyntax: not all silent morphemes are phonologically empty
 - Phonology: not all silent C/V positions are phonologically empty
- Technically
 - Strict CV + Turbidity Theory
 - Strict CV: empty positions (EN)
 - Turbidity Theory: formalization of inaubible phonological primes

- Proposal
 - Silence and phonological emptiness are not the same thing
 - Silence can conceal morphophonological complexity
 - Morphosyntax: not all silent morphemes are phonologically empty
 - Phonology: not all silent C/V positions are phonologically empty
- Technically
 - Strict CV + Turbidity Theory
 - Strict CV: empty positions (EN)
 - Turbidity Theory: formalization of inaubible phonological primes

Benefits

- Refined phonological representations help keeping morphosyntax and phonology cleaner
 - Reduce allomorphy (see work by Cavirani, Faust, Lampitelli, Scheer, and Ulfsbjorninn ao)
 - Reduce the need for postsyntactic morphological operations (Cortiula, Starke, Cavirani in prep)
 - Reduce the need for ad hoc phonological parameters

This talk

- Marked morpheme linear order with no postsyntactic operations
 PL marking in Colonnatese nP
- Consistent morphophonological system with no ad hoc parameters
 - Inflectional markers in Egyptian Arabic VF

Benefits

- Refined phonological representations help keeping morphosyntax and phonology cleaner
 - Reduce allomorphy (see work by Cavirani, Faust, Lampitelli, Scheer, and Ulfsbjorninn ao)
 - Reduce the need for postsyntactic morphological operations (Cortiula, Starke, Cavirani in prep)
 - Reduce the need for ad hoc phonological parameters

This talk

- Marked morpheme linear order with no postsyntactic operations
 - PL marking in Colonnatese nP
- Consistent morphophonological system with no ad hoc parameters
 - Inflectional markers in Egyptian Arabic VP

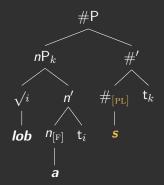
Structure of the talk

- 1 PL marking in Colonnatese nP
- 2 Inflectional markers in Egyptian Arabic
- 3 Stress and length in Egyptian Arabic
- 4 Conclusion
- 5 Appendix

PL marking in Colonnatese nP

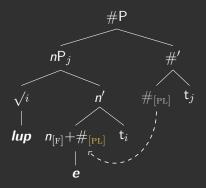
PL marking in Colonnatese nP

- nP structure
 - $-\sqrt{+n+\#(Marantz\ 2007)}$
 - $\vec{n} = \text{GENDER}$ (Lowenstamm 2008, Picallo 2008, Kramer 2015 ao)
- Mirror principle (Baker 1995)
 - The linear order of the morphological markers of a given form mirrors the syntactic structure of such form
- Prediction
 - lacksquare $\sqrt{ ext{LOB}} ext{-}a_{ ext{F}} ext{-}s_{ ext{PL}}$ 'wolves

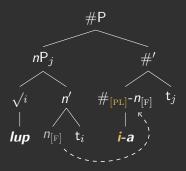

- nP structure
 - $-\sqrt{+n+\# \text{(Marantz 2007)}}$
 - $\vec{n} = \text{GENDER}$ (Lowenstamm 2008, Picallo 2008, Kramer 2015 ao)
- Mirror principle (Baker 1995)
 - The linear order of the morphological markers of a given form mirrors the syntactic structure of such form
- Prediction
 - \blacksquare $\sqrt{\text{LOB}}$ - a_{F} - s_{PL} 'wolves

- nP structure
 - $-\sqrt{+n+\#(Marantz\ 2007)}$
 - $\vec{n} = \text{GENDER}$ (Lowenstamm 2008, Picallo 2008, Kramer 2015 ao)
- Mirror principle (Baker 1995)
 - The linear order of the morphological markers of a given form mirrors the syntactic structure of such form
- Prediction
 - $\sqrt{\text{-GENDER-}\#} \Rightarrow \mathsf{Sp.} \ \sqrt{\text{LOB}} a_{\mathsf{F}} s_{\mathsf{PL}}$ 'wolves'
 - * /-GENDER.# \Rightarrow lt. $\sqrt{\text{LUP}}$ - e_{FPI} 'wolves
 - *,/-#-GENDER \Rightarrow Col. $\sqrt{\text{LUP}}$ - i_{PL} - a_{PL} 'wolves

- nP structure
 - $-\sqrt{+n+\#(Marantz\ 2007)}$
 - $\vec{n} = \text{GENDER}$ (Lowenstamm 2008, Picallo 2008, Kramer 2015 ao)
- Mirror principle (Baker 1995)
 - The linear order of the morphological markers of a given form mirrors the syntactic structure of such form
- Prediction
 - $\sqrt{\text{-GENDER-}\#} \Rightarrow \mathsf{Sp.} \ \sqrt{\text{LOB}} a_{\mathsf{F}} s_{\mathsf{PL}}$ 'wolves'
 - \star ,/-GENDER.# \Rightarrow lt. $\sqrt{\text{LUP}}$ - $e_{\text{F.PL}}$ 'wolves'
 - *,/-#-GENDER \Rightarrow Col. $\sqrt{\text{LUP}}$ - i_{PL} - a_{PL} 'wolve

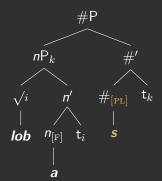

- nP structure
 - $-\sqrt{+n+\# (Marantz\ 2007)}$
 - $\vec{n} = \text{GENDER}$ (Lowenstamm 2008, Picallo 2008, Kramer 2015 ao)
- Mirror principle (Baker 1995)
 - The linear order of the morphological markers of a given form mirrors the syntactic structure of such form
- Prediction
 - $\sqrt{\text{-GENDER-}\#} \Rightarrow \mathsf{Sp.} \ \sqrt{\text{LOB}} a_{\mathsf{F}} s_{\mathsf{PL}}$ 'wolves'
 - *\frac{1}{2}-GENDER.# \Rightarrow It. $\sqrt{\text{LUP}}-e_{\text{F.PL}}$ 'wolves'
 - * $\sqrt{-\#\text{-GENDER}} \Rightarrow \text{Col. } \sqrt{\text{LUP}} i_{\text{PL}} a_{\text{PL}}$ 'wolves'

■ Sp. $\sqrt{\text{LOB}}$ - a_{F} - s_{PL} 'wolves'

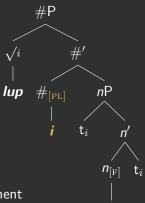

- Spec-to-Spec roll-up movement
- $a \Leftrightarrow [F]$ (cf. $\sqrt{\text{LOB}}$ - a_F 'wolf')
- *s* ⇔ [PL]

■ It. $\sqrt{\text{LUP}}$ - $e_{\text{F.PL}}$ 'wolves'

- Spec-to-Spec roll-up movement + fusion: [F] [PL] \rightarrow [F.PL]
- $a \Leftrightarrow [F]$ (cf. $\sqrt{\text{LUP}}$ - a_F 'wolf')
- $e \Leftrightarrow [F.PL]$

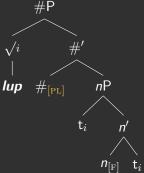

■ Col. $\sqrt{\text{LUP}}$ - i_{PL} - a_{PL} 'wolves'

- lacksquare Spec-to-Spec roll-up movement + m. merger: [F] [PL]
 ightarrow [PL]-[F]
- $a \Leftrightarrow [F]$ (cf. $\sqrt{\text{LUP}}$ - a_F 'wolf')
- $i \Leftrightarrow [PL]$


- Spanish
 - No post-syntactic operation
- Italian
 - Fusion
- Colonnatese
 - Morphological merger

■ Sp. $\sqrt{\text{LOB}}$ - a_{F} - s_{PL} 'wolves'

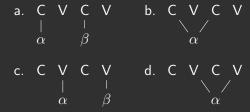
- Spec-to-Spec roll-up movement
- $\blacksquare a \Leftrightarrow [F], s \Leftrightarrow [PL]$


■ Col. $\sqrt{\text{LUP}}$ - i_{PL} - a_{PL} 'wolves' (Taraldsen 2010)

- Spec-to-Spec movement
- $\blacksquare a \Leftrightarrow [F], i \Leftrightarrow [PL]$

a

■ It. $\sqrt{\text{LUP}}$ - $e_{\text{F.}pl}$ 'wolves' (Taraldsen 2010)



- Spec-to-Spec movement
- \blacksquare $a \Leftrightarrow [F], e \Leftrightarrow [PL[F]]$

- Spanish
 - Roll-up movement
- Colonnatese
 - No roll-up movement
 - $\blacksquare a \Leftrightarrow [F], i \Leftrightarrow [PL]$
- Italian
 - No roll-up movement
 - \blacksquare $a \Leftrightarrow [F], e \Leftrightarrow [PL[F]]$

Strict CV (Lowenstamm 1996, Scheer 2004)

Phonological strings as CV sequences

- Positions engage in lateral relations (government/licensing)
- Complexity Condition (Harris 1990)
 - Lateral strength ∝ representational complexity
 - Representational complexity = number of representational primitives

Strict CV (Lowenstamm 1996, Scheer 2004)

Phonological strings as CV sequences

- Positions engage in lateral relations (government/licensing)
- Complexity Condition (Harris 1990)
 - Lateral strength \propto representational complexity
 - Representational complexity = number of representational primitives

Strict CV (Lowenstamm 1999, Scheer 2004)

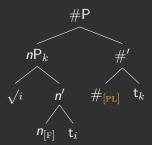
- EN must be governed by a following non-empty N (a. *vs* b.)
- Final EN (FEN) must be parametrically licensed
 - ON: FEN can stay empty (b., d. *vs* c.
 - OFF: FEN must be pronunced (epenthesis, c.
- FEN can be further parametrically licensed to properly govern.
 - ON: FEN can properly govern a preceding EN (d.
 - OFF: FEN cannot properly govern a preceding EN (b

Strict CV (Lowenstamm 1999, Scheer 2004)

- EN must be governed by a following non-empty N (a. vs b.)
- Final EN (FEN) must be parametrically licensed
 - ON: FEN can stay empty (b., d. vs c.)
 - OFF: FEN must be pronunced (epenthesis, c.)
- FEN can be further parametrically licensed to properly goverr
 - ON: FEN can properly govern a preceding EN (d.
 - OFF: FEN cannot properly govern a preceding EN (b.

Strict CV (Lowenstamm 1999, Scheer 2004)

- EN must be governed by a following non-empty N (a. *vs* b.)
- Final EN (FEN) must be parametrically licensed
 - ON: FEN can stay empty (b., d. vs c.)
 - OFF: FEN must be pronunced (epenthesis, c.)
- FEN can be further parametrically licensed to properly govern
 - ON: FEN can properly govern a preceding EN (d.)
 - OFF: FEN cannot properly govern a preceding EN (b.)


Morpheme templates (Bendjaballah & Heiden 2008)

- a. Regular marker: always audible
- b. Floating marker: audible if associated to a CV slot
- c. Empty CV marker: audible if hosting some melodic prime

Phonological account

■ Spec-to-Spec roll-up movement

Phonological account - Sp. $\sqrt{\text{LOB}}$ - a_{F} - s_{PL}

- Spec-to-Spec roll-up mov. $[[\sqrt{\text{LOB}} [n_F]] \#_{PL}]$
- $a \Leftrightarrow [F]$
- $\blacksquare C_sV \Leftrightarrow [PL]$
- Lampitelli (2014)

c. C V C V + C V
$$\begin{smallmatrix} I & I & I & I \\ I & O & b & a & s \end{smallmatrix}$$

Phonological account - It. $\sqrt{ ext{LUP}}$ - $e_{ ext{F.PL}}$

- Spec-to-Spec roll-up mov. $[[\sqrt{\text{LOB}} [n_F]] \#_{PL}]$
- $a \Leftrightarrow [F]$
- \blacksquare $_{i} \Leftrightarrow [PL]$
- | | | /a / = | A |, /i / = | I |
- |A.I| = /e/
- Passino (2009), Lampitelli (2010, 2014)

c. C V C V
$$+$$
 l u p a i

Phonological account - Col. $\sqrt{\text{LUP}}$ - i_{PL} - a_{PL}

- Spec-to-Spec roll-up mov. $[[\sqrt{\text{LOB}} [n_{\text{F}}]] \#_{\text{PL}}]$
- $\mathsf{CV}_a \Leftrightarrow [\mathsf{F}]$
- \blacksquare $_i \Leftrightarrow [PL]$
- *V_{|X,Y|}: unstressed V cannot bear complex melodic structure (Cavirani 2015, Cavirani and Hamann 2022)

b.
$$egin{array}{c|cccc} \mathsf{V} & \mathsf{C} & \mathsf{V} & \mathsf{C} & \mathsf{V} & \mathsf{C} & \mathsf{V} \\ & & \mathsf{I} & \mathsf{I} & \mathsf{I} & & & \mathsf{I} \\ & & & \mathsf{I} & \mathsf{u} & \mathsf{p} & & & \mathsf{a} \end{array}$$

Phonological account

- Spanish
 - $_{a} \Leftrightarrow [F]$ $C_{s}V \Leftrightarrow [PL]$
- Colonnatese
 - $CV_a \Leftrightarrow [F]$ $_i \Leftrightarrow [PL]$
- Italian
 - a ⇔ [F]
 - \blacksquare $_i \Leftrightarrow [PL]$

Phonological account

- Uniform morphosyntactic derivation
- No postsyntactic operation
 - "syntax should be purged of any internal devices replicating the effects of other devices independently needed at PF or LF" (Brody 1995, 1997)
- Morpheme linear ordering managed by phonology
 - "linear order is a property of the SM interface" (Dobashi 2020)

Inflectional markers in Egyptian Arabic

Inflectional markers in Egyptian Arabic

```
1PL lebesna
1SG lebest
3F.SG lebset
```

Excerpt of PRF of $\sqrt{\rm LBS}$ 'put (clothes) on' (Fathi 2013)

- CeCC
 - 1PL: ...*besn*..
 - 1sg: ...*best*
- CCeC
 - 3F.SG: ...*bset*

```
1PL lebesna
1SG lebest
3F.SG lebset
```

Excerpt of PRF of $\sqrt{\rm LBS}$ 'put (clothes) on' (Fathi 2013)

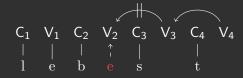
- CeCC
 - 1PL: ...*besn*...
 - 1sg: ...*best*
 - CCeC
 - 3F.SG: ...bset

```
1PL lebesna
1SG lebest
3F.SG lebset
```

Excerpt of PRF of $\sqrt{\rm LBS}$ 'put (clothes) on' (Fathi 2013)

- CeCC
 - 1PL: ...*besn*...
 - 1sg: ...best
- CCeC
 - 3F.SG: ...*bset*

■ 1PL: lebesna


■ 1sg: lebest

■ 3F.SG: lebset

■ 1PL: lebesna

- 1sg: lebest
 - V_4 governs $V_3 \rightarrow$ **FEN parameter ON**

- 3F.SG: *lebse*t
 - \blacksquare V₄ does not govern V₃ \rightarrow **FEN** parameter OFF

- 1sg: lebest
 - V_4 governs $V_3 \rightarrow$ **FEN** parameter **ON**

- 3F.SG: lebset
 - V_4 does not govern $V_3 \rightarrow$ **FEN parameter OFF**

Problem

- FEN parameters are systemic
- If FEN governs in 1sg, then it should in 3f.sg too
- Scheer (2004): "At edges of morphemes, morphology (or syntax, or semantics) governs into phonological affairs and may outrank the domestic phonological rule: even though FEN are unpronounced, they may become good governors/licensors on a morphological order"
- Some questions
 - How to account for such cases of inconsistent FEN parametrization?
 - How to make a N laterally active despite being inaudible?
 - How can morphological orders be translated into phonological terms?

36 / 75

Problem

- FEN parameters are systemic
- If FEN governs in 1sg, then it should in 3f.sg too
- Scheer (2004): "At edges of morphemes, morphology (or syntax, or semantics) governs into phonological affairs and may outrank the domestic phonological rule: even though FEN are unpronounced, they may become good governors/licensors on a morphological order"

Some questions

- How to account for such cases of inconsistent FEN parametrization?
- How to make a N laterally active despite being inaudible?
- How can morphological orders be translated into phonological terms?

- Proposal
 - The silent final V of 1sg and 1f.sg are different objects
 - 3F.SG has a FEN \Rightarrow no government
 - 1SG has a silent FN (FSN) \Rightarrow government
- Technically
 - Formal distinction between phonological emptiness and silence
 - Phonological emptiness = absence of melodic primes
 - Silence = absence or underparsing of melodic primes
 - Upgrading strict CV with Turbidity Theory

- Proposal
 - The silent final V of 1sg and 1f.sg are different objects
 - 3F.SG has a FEN \Rightarrow no government
 - 1sg has a silent FN (FSN) \Rightarrow government
- Technically
 - Formal distinction between phonological emptiness and silence
 - Phonological emptiness = absence of melodic primes
 - Silence = absence or underparsing of melodic primes
 - Upgrading strict CV with Turbidity Theory

37 / 75

Turbidity Theory (Goldrick 2001)

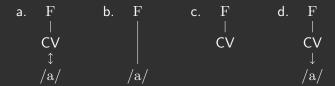
- OT-born input-output Containment relation
 - The input is always contained in the output
- Asymmetric relations between melodic primes and prosodic nodes
 - Projection (↓
 - Lexical affiliation of a melodic prime to a prosodic node
 - No manipulation

Turbidity Theory (Goldrick 2001)

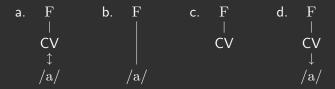
- OT-born input-output Containment relation
 - The input is always contained in the output
- Asymmetric relations between melodic primes and prosodic nodes
 - Projection (↓)
 - Lexical affiliation of a melodic prime to a prosodic node
 - No manipulation
 - Pronunciation (↑)
 - Phonetic interpretation of a melodic prime on a prosodic node
 - Manipulated by phonology (addition/deletion of ↑

38 / 75

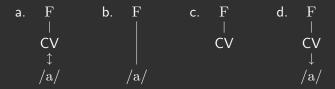
Turbidity Theory (Goldrick 2001)


- OT-born input-output Containment relation
 - The input is always contained in the output
- Asymmetric relations between melodic primes and prosodic nodes
 - Projection (↓)
 - Lexical affiliation of a melodic prime to a prosodic node
 - No manipulation
 - Pronunciation (↑)
 - Phonetic interpretation of a melodic prime on a prosodic node
 - Manipulated by phonology (addition/deletion of ↑)

Morpheme templates


- a. Regular marker: always audible (‡)
- b. Floating marker: audible if associated to a CV slot
- c. Empty CV marker: audible if hosting some melodic prime

More morpheme templates


- a. Regular marker: always audible (‡)
- b. Floating marker: audible if associated to a CV slot
- c. Empty CV marker: audible if hosting some melodic prime
- **d**. Silent marker: non-empty node (\downarrow) , audible if not governed

Turbidity Theory and the Complexity Condition

- Complexity Condition (Harris 1990)
 - $lue{}$ Lateral strength \propto representational complexity
 - Representational complexity = number of representational primitives
- Some consequences
 - SN are more complex/laterally stronger than EN
 - SN can be phonologically active

Turbidity Theory and the Complexity Condition

- Complexity Condition (Harris 1990)
 - Lateral strength ∝ representational complexity
 - Representational complexity = number of representational primitives
- Some consequences
 - SN are more complex/laterally stronger than EN
 - SN can be phonologically active

 \blacksquare 3F.SG: /lebs-t/ \rightarrow ['lebset]

■ 1sg: /lebs-t/ \rightarrow [le'best]

■ 3F.SG: /lebs-t/ \rightarrow ['lebset]

■ 1sg: $/lebs-t/ \rightarrow [le'best]$

 \blacksquare 3F.SG marker: V = EN

 $\blacksquare 1$ SG marker: V = SN

 \blacksquare 3F.SG marker: V = EN

■ 1SG marker: V = SN

Interim conclusion

- Strict CV cum Turbidity Theory allows for
 - A neat formalization of silent phonologically active positions (the FSN of 1sg)
 - A neat account of patterns that are incompatible with a consistent use of FEN parameters
 - No need for the parameter regulating FEN activity
 - The translation into phonological terms of *morphological orders* impinging on FEN lateral strength

Stress and length in Egyptian Arabic

Stress and length in Egyptian Arabic

- Stress and length both in final and prefinal position
- Length-stress correlation (when V = corner vowel; see below)
 - a. [mesek'naː] CVCVC'CVV 'we caught him'
 - b. [mesek'naːha] CVCVC'CVVCV

 'we caught her'
 - c. [mesekna'ha:li] CVCVCCV'CVVCV'we caught her for me'

Length is contrastive only in final position

```
[meˈsektu]
                             [mesek'tux]
    /mesek-tu/
                             /mesek-tu-u/
    caught-2PL.SBJ
                             caught-2PL.SBJ-3M.SG.OBJ
    'you caught'
                             'you caught it'
b.
    [ˈkorsi]
                             [korˈsiː]
                             /korsi-i/
    /korsi/
    chair.sg
                             chair.SG-3M.SG.POSS
     'chair'
                             'his chair'
```

- Fathi (2013) shows that 'finality' is illusory
 - \blacksquare Concatenation of 3M.SG.OBJ \Rightarrow lengthening of the base-final vowel
 - What is the UR of 3M.SG.OBJ?

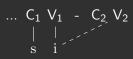
Length is contrastive only in final position

```
[meˈsektu]
                             [mesek'tux]
    /mesek-tu/
                             /mesek-tu-u/
    caught-2PL.SBJ
                             caught-2PL.SBJ-3M.SG.OBJ
    'you caught'
                             'you caught it'
b.
    [ˈkorsi]
                             [korˈsiː]
                             /korsi-i/
    /korsi/
    chair.SG
                             chair.SG-3M.SG.POSS
    'chair'
                             'his chair'
```

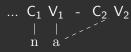
- Fathi (2013) shows that 'finality' is illusory
 - \blacksquare Concatenation of $3\mathrm{M.SG.OBJ} \Rightarrow$ lengthening of the base-final vowel
 - What is the UR of 3M SG OBI?

Length is contrastive only in final position

```
[meˈsektu]
                             [mesek'tux]
    /mesek-tu/
                             /mesek-tu-u/
    caught-2PL.SBJ
                            caught-2PL.SBJ-3M.SG.OBJ
    'you caught'
                             'you caught it'
b.
    [ˈkorsi]
                             [korˈsiː]
                             /korsi-i/
    /korsi/
    chair.SG
                            chair.SG-3M.SG.POSS
    'chair'
                             'his chair'
```


- Fathi (2013) shows that 'finality' is illusory
 - \blacksquare Concatenation of $3\mathrm{M.SG.OBJ} \Rightarrow$ lengthening of the base-final vowel
 - What is the UR of 3M.SG.OBJ?

$3\mathrm{M.SG.OBJ}$ as emtpy CV


a. [mesek'tu:] /mesek-tu-u/ caught-2PL.SBJ-3M.SG.OBJ 'you caught it'

...
$$C_1 \ V_1 - C_2 \ V_2$$

b. [kor'si:]
/korsi-i/
chair.SG-3M.SG.POSS
'his chair'

c. [mesek'naː]
/mesek-na-a/
caught-1PL.SBJ-3M.SG.OBJ
'we caught him'

- Depending on "stylistic or contextual factors like slow speech or rhetorical emphasis" (Fathi 2013), these forms can be followed by [h]
 - [mesek'tuː] ~ [mesek'tuːh]
 - \blacksquare [kor'siː] \sim [kor'siːh]
- If these forms are followed by another suffix, [h] is followed by [u], and stress and length shift to the right (cf. [mesek'tuː])

```
[mesektu'hu:li] /mesek-tu-hu-l-i/ caught-2PL.SBJ-3M.SG.OBJ-for-1SG.DAT 'you caught him for me'
```

- Depending on "stylistic or contextual factors like slow speech or rhetorical emphasis" (Fathi 2013), these forms can be followed by [h]
 - \blacksquare [mesek'tuː] \sim [mesek'tuːh]
 - $[kor'six] \sim [kor'sixh]$
- If these forms are followed by another suffix, [h] is followed by [u], and stress and length shift to the right (cf. [mesek'tux])

```
[mesektu'hu:li]
/mesek-tu-hu-l-i/
caught-2PL.SBJ-3M.SG.OBJ-for-1SG.DAT
'you caught him for me'
```

- Depending on "stylistic or contextual factors like slow speech or rhetorical emphasis" (Fathi 2013), these forms can be followed by [h]
 - [mesek'tuː] ~ [mesek'tuːh]
 - $[kor'six] \sim [kor'sixh]$
- If these forms are followed by another suffix, [h] is followed by [u], and stress and length shift to the right (cf. [mesek'tuː])

```
[mesektu'hu:li]
/mesek-tu-hu-l-i/
caught-2PL.SBJ-3M.SG.OBJ-for-1SG.DAT
'you caught him for me'
```

- 3M.SG.OBJ \neq empty CV
- 3M.SG.OBJ = CV
 - C = /h
 - V = /u/
- /h/ and /u/ are not necessarily pronounced
- /u/ is visible to the stress assigning algorithm
 - Stress to the prefinal melodic prime associated with a V
- /hu/ is phonologically active, despite being silen

- 3M.SG.OBJ \neq empty CV
- 3M.SG.OBJ = **CV**
 - C = /h/
 - V = /u/
- /h/ and /u/ are not necessarily pronounced
- /u/ is visible to the stress assigning algorithm
 - Stress to the prefinal melodic prime associated with a V
- /hu/ is phonologically active, despite being silen

- 3M.SG.OBJ \neq empty CV
- 3m.sg.obj = **CV**
 - C = /h/
 - V = /u/
- /h/ and /u/ are not necessarily pronounced
- /u/ is visible to the stress assigning algorithm
 - Stress to the prefinal melodic prime associated with a V
- /hu/ is phonologically active, despite being silen

- 3M.SG.OBJ \neq empty CV
- 3M.SG.OBJ = CV
 - C = /h/
 - V = /u/
- /h/ and /u/ are not necessarily pronounced
- /u/ is visible to the stress assigning algorithm
 - Stress to the prefinal melodic prime associated with a V
- /hu/ is phonologically active, despite being silen

- 3M.SG.OBJ \neq empty CV
- 3M.SG.OBJ = CV
 - C = /h/
 - V = /u/
- /h/ and /u/ are not necessarily pronounced
- /u/ is visible to the stress assigning algorithm
 - Stress to the prefinal melodic prime associated with a V
- /hu/ is phonologically active, despite being silen

- 3M.SG.OBJ \neq empty CV
- 3M.SG.OBJ = CV
 - C = /h/
 - V = /u/
- /h/ and /u/ are not necessarily pronounced
- /u/ is visible to the stress assigning algorithm
 - Stress to the prefinal melodic prime associated with a V
- /hu/ is phonologically active, despite being silent

Representing $3 \mathrm{M.SG.OBJ}$ - provisional

- lacksquare $3 \mathrm{M.SG.OBJ}$ enters the derivation with only \downarrow
- Its pronunciation (\uparrow) depends on the phonological environment

$$\begin{array}{ccc} \mathsf{C}_1 & \mathsf{V}_1 \\ \downarrow & \downarrow \\ \mathsf{h} & \mathsf{u} \end{array}$$

- What about [kor'six] and [mesek'nax]?
 - How to make [iː] and [aː] compatible with /hu/_{3M.SG,OBJ}?
 - Where does the extra V come from if not provided by $\frac{hu}{3M \text{ sg } OBL}$

Representing $3\mathrm{M.SG.OBJ}$ - provisional

- \blacksquare 3M.SG.OBJ enters the derivation with only \downarrow
- Its pronunciation (\uparrow) depends on the phonological environment

$$\begin{array}{ccc} \mathsf{C}_1 & \mathsf{V}_1 \\ \downarrow & \downarrow \\ \mathsf{h} & \mathsf{u} \end{array}$$

- What about [kor'siː] and [mesek'naː]?
 - How to make [iː] and [aː] compatible with /hu/_{3M.SG.OBJ}?
 - Where does the extra V come from if not provided by $/hu/_{\rm 3M.SG.OBJ}$?

Stress and length

- EA corner vowels are phonologically long
- EA corner vowels are phonetically long if stressed
 - When a corner vowel "is identified as the stress bearing unit, pitch floods over its corresponding templatic chunk (that is two V slots), thus perceived 'longer' than usual" (Fathi 2013: 198)
- Turbidity Theory provides the right formal tools for this mismatch

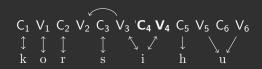
52 / 75

Stress and length

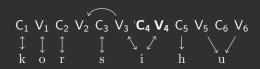
- EA corner vowels are phonologically long
- EA corner vowels are phonetically long if stressed
 - When a corner vowel "is identified as the stress bearing unit, pitch floods over its corresponding templatic chunk (that is two V slots), thus perceived 'longer' than usual" (Fathi 2013: 198)
- Turbidity Theory provides the right formal tools for this mismatch

Stress and length

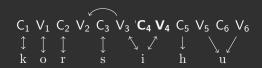
- EA corner vowels are phonologically long
- EA corner vowels are phonetically long if stressed
 - When a corner vowel "is identified as the stress bearing unit, pitch floods over its corresponding templatic chunk (that is two V slots), thus perceived 'longer' than usual" (Fathi 2013: 198)
- Turbidity Theory provides the right formal tools for this mismatch


- No stress ⇒ phonologically long, phonetically short
 - Melodic primes associated with both V via ↓, but only with one via ↑
- \blacksquare Stress \Rightarrow phonologically long, phonetically long
 - Stress licenses length/introduces
 - Prime associated with both V via L and

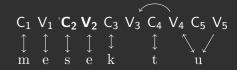
- No stress \Rightarrow phonologically long, phonetically short
- lacksquare Melodic primes associated with both V via \downarrow , but only with one via \uparrow
- Stress ⇒ phonologically long, phonetically long
 - Stress licenses length/introduces ↑
 - Prime associated with both V via ↓ and ↑


- Vocabulary entries (UR)
 - 1. /korsiː/ 'chair.sg'
 - V_3 , $V_4 \downarrow /i/ \Rightarrow$ phonologically long /i:/
 - $| /i/ \uparrow V_3 \Rightarrow \text{ phonetically short [i]}$
 - 2. /huː/ '3M.sg.poss
 - V_5 , $V_6 \downarrow /u/ \Rightarrow$ phonologically long /u:/
 - \blacksquare C₅ \downarrow /h/
 - \blacksquare no $\uparrow \Rightarrow$ phonetically silent marker

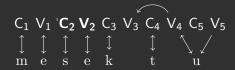
- Vocabulary entries (UR)
 - 1. /korsiː/ 'chair.sg'
 - V_3 , $V_4 \downarrow /i/ \Rightarrow$ phonologically long /i:/
 - $| i/\uparrow V_3 \Rightarrow \text{ phonetically short [i]}$
 - 2. /huː/ '3M.SG.POSS'
 - V_5 , $V_6 \downarrow /u/ \Rightarrow$ phonologically long /u:/
 - $C_5 \downarrow /h/$
 - no $\uparrow \Rightarrow$ phonetically silent marker
- /uː/ final ⇒ /iː/ penultimate


- Vocabulary entries (UR)
 - 1. /korsiː/ 'chair.sg'
 - V_3 , $V_4 \downarrow /i/ \Rightarrow$ phonologically long /i:/
 - $| i/\uparrow V_3 \Rightarrow \text{ phonetically short [i]}$
 - 2. /huː/ '3M.SG.POSS'
 - V_5 , $V_6 \downarrow /u/ \Rightarrow$ phonologically long /u:/
 - $C_5 \downarrow /h/$
 - no $\uparrow \Rightarrow$ phonetically silent marker
- | /uː/ final \Rightarrow /iː/ penultimate

- Phonological computation
 - Stress to /i/ (penultimate associated prime)
 - /i/-to-V₄ ↑ insertion (length licensing
 - \blacksquare /i:/ \rightarrow [i:]
 - \blacksquare /huː/ unstressed \Rightarrow no $\uparrow \Rightarrow \emptyset$



- Phonological computation
 - Stress to /i/ (penultimate associated prime)
 - - /iː/ → [iː]
 - lacksquare /huː/ unstressed \Rightarrow no \uparrow \Rightarrow \emptyset


- Phonological computation
 - Stress to /i/ (penultimate associated prime)
 - /i/-to-V₄ ↑ insertion (length licensing)
 - /iː/ → [iː]
 - /hu:/ unstressed \Rightarrow no $\uparrow \Rightarrow \emptyset$

 $\hspace{3.5cm} \rule[-0.2cm]{0.2cm}{.4cm} \hspace{3.5cm} \hspace{3.$

- \blacksquare 2sg.sbj = /tu:/
- No stress on 2sg.sbj's /uː/
- \blacksquare No /u/-to-V $_5\uparrow\Rightarrow/$ tu $_1/\rightarrow[$ tu $_2/\rightarrow$

 $\hspace{3.5cm} \rule{0.2cm}{1.2cm} \hspace{0.2cm} \hspace{$

- \blacksquare 2sg.sbj = /tu:/
- No stress on 2sg.sbj's /uː/
- No /u/-to- $V_5 \uparrow \Rightarrow /tu:/ \rightarrow [tu]$

 $\hspace{3.5cm} \rule{0.2cm}{4.5cm} \hspace{0.2cm} / mesek-tu:-hu:/ \hspace{0.1cm} \text{`you caught him'} \hspace{0.1cm} \to [mesek'tu:] \\$

- Stress on $2 sg.sbj's /u:/ \Rightarrow /u/-to-V_5 \uparrow insertion \Rightarrow /tu:/ \rightarrow [tu:]$
- No stress on $3\text{M.SG.OBJ's /uz/} \Rightarrow \text{no } \uparrow \Rightarrow /\text{huz/} \rightarrow \text{Invariants}$

 $\hspace{3.5cm} \rule{0.2cm}{4.5cm} \hspace{0.2cm} / mesek-tu:-hu:/ \hspace{0.1cm} \text{`you caught him'} \hspace{0.1cm} \to [mesek'tu:] \\$

- Stress on $2 sg.sbj's /u:/ \Rightarrow /u/-to-V_5 \uparrow insertion \Rightarrow /tu:/ \rightarrow [tu:]$
- No stress on $3\text{M.SG.OBJ's }/\text{u:}/\Rightarrow \text{no }\uparrow \Rightarrow /\text{hu:}/\rightarrow \emptyset$

ullet /mesek-tuː-huː-l-iː/ 'you caught him for me' o [mesektuˈhuːli]

- Stress on 3M.SG.OBJ's /u: $/ \Rightarrow \uparrow$ insertion $\Rightarrow /$ hu: $/ \rightarrow [$ hu:]
- No stress on 2sg.sbj's /uː/ \Rightarrow no /u/-to-V₅ $\uparrow \Rightarrow$ /tuː/ \rightarrow [tu] V₆ governs V₅
- No stress on 1 SG.DAT /iː/ \Rightarrow no /i/-to-V₉ $\uparrow \Rightarrow$ /iː/ \rightarrow [i

ullet /mesek-tuː-huː-l-iː/ 'you caught him for me' o [mesektuˈhuːli]

- Stress on $3\text{M.SG.OBJ's }/\text{u:}/\Rightarrow\uparrow\text{insertion}\Rightarrow/\text{hu:}/\rightarrow[\text{hu:}]$
- No stress on 2sg.sbj's /u:/ \Rightarrow no /u/-to-V₅ $\uparrow \Rightarrow$ /tu:/ \rightarrow [tu]
 - V₆ governs V₅
- lacksquare No stress on $1_{\mathrm{SG.DAT}}$ /iː/ \Rightarrow no /i/-to-V $_{9}$ \uparrow \Rightarrow /iː/ \rightarrow [i

ullet /mesek-tuː-huː-l-iː/ 'you caught him for me' o [mesektuˈhuːli]

- Stress on 3M.SG.OBJ's /u: $/ \Rightarrow \uparrow$ insertion $\Rightarrow /$ hu: $/ \rightarrow [$ hu:]
- No stress on $2 {
 m SG.SBJ's}$ /u:/ \Rightarrow no /u/-to-V $_5 \uparrow \Rightarrow$ /tu:/ \rightarrow [tu]
 - V₆ governs V₅
- No stress on 1sg.dat /i:/ \Rightarrow no /i/-to-V₉ $\uparrow \Rightarrow$ /i:/ \rightarrow [i]

Interim conclusion

- Turbidity Theory allows for a neat formalization of
 - Silent phonologically active objects (/huː/_{3M.SG.OBJ})
 - The distribution of stress (always penultimate)
 - The correlation of stress and length in corner vowels

Conclusion

Conclusion

- Strict CV
 - Availability of ordered prosodic nodes (CV)
 - Marked linear ordering of Col. PL marker
- Strict CV cum Turbidity Theory
 - Phonological activity of silent objects
 - Lateral strength of the FSN of EA 1sg marker
 - Visibility of the silent EA 3M.SG.OBJ marker for the stress assignment
 - Stress/length correlation of EA corner vowels

- Strict CV
 - Availability of ordered prosodic nodes (CV)
 - Marked linear ordering of Col. PL marker
- Strict CV cum Turbidity Theory
 - Phonological activity of silent objects
 - Lateral strength of the FSN of EA 1sg marker
 - Visibility of the silent EA 3M.SG.OBJ marker for the stress assignment
 - Stress/length correlation of EA corner vowels

- Architectural consequences
 - Reduced need for postsyntactic morphological operations
 - Morpheme linear ordering at PF/SM (Dobashi 2020)
 - PF operations as purely phonological
 - Direct morphosyntax-phonology mapping (Scheer 2011)
 - No modularity violation
 - 'Morphological orders' to phonology encoded in phonological representations
 - Reduced need for ad hoc phonological parameters
 - Lateral strength encoded in the Lexicon
 - Lateral strength ∝ representational complexity

- Architectural consequences
 - Reduced need for postsyntactic morphological operations
 - Morpheme linear ordering at PF/SM (Dobashi 2020)
 - PF operations as purely phonological
 - Direct morphosyntax-phonology mapping (Scheer 2011)
 - No modularity violation
 - 'Morphological orders' to phonology encoded in phonological representations
 - Reduced need for ad hoc phonological parameter:
 - Lateral strength encoded in the Lexicon
 - Lateral strength ∝ representational complexit

- Architectural consequences
 - Reduced need for postsyntactic morphological operations
 - Morpheme linear ordering at PF/SM (Dobashi 2020)
 - PF operations as purely phonological
 - Direct morphosyntax-phonology mapping (Scheer 2011)
 - No modularity violation
 - 'Morphological orders' to phonology encoded in phonological representations
 - Reduced need for ad hoc phonological parameters
 - Lateral strength encoded in the Lexicon
 - Lateral strength ∝ representational complexity

Appendix

Appendix

- Formally unclear status
 - 1. (F)EN can apparently distinguish EN from yers
 - FEN "can only govern nuclei that do not possess any floating melody in the lexicon" (Scheer 2004: 644)
 - 2. $\mathit{Yers} = \mathsf{V} + \mathsf{floating}$ primes
 - 3. If primes are floating \Rightarrow no association with V
 - 4. If V is not associated with any prime \Rightarrow V is empty
 - -. If v is not associated with any printe -> v is c

Edoardo Cavirani (CRISSP)

- Formally unclear status
 - 1. (F)EN can apparently distinguish EN from yers
 - FEN "can only govern nuclei that do not possess any floating melody in the lexicon" (Scheer 2004: 644)
 - 2. Yers = V + floating primes
 - 3. If primes are floating \Rightarrow no association with V
 - 4. If V is not associated with any prime \Rightarrow V is empt
 - 5. (F)EN should not distinguish *yers* from EN

- Formally unclear status
 - 1. (F)EN can apparently distinguish EN from yers
 - FEN "can only govern nuclei that do not possess any floating melody in the lexicon" (Scheer 2004: 644)
 - 2. Yers = V + floating primes
 - 3. If primes are floating \Rightarrow no association with V

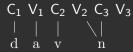
Edoardo Cavirani (CRISSP)

- Formally unclear status
 - 1. (F)EN can apparently distinguish EN from yers
 - FEN "can only govern nuclei that do not possess any floating melody in the lexicon" (Scheer 2004: 644)
 - 2. Yers = V + floating primes
 - 3. If primes are floating \Rightarrow no association with V
 - 4. If V is not associated with any prime \Rightarrow V is empty
 - 5. (F)EN should not distinguish *vers* from E

- Formally unclear status
 - 1. (F)EN can apparently distinguish EN from yers
 - FEN "can only govern nuclei that do not possess any floating melody in the lexicon" (Scheer 2004: 644)
 - 2. Yers = V + floating primes
 - 3. If primes are floating \Rightarrow no association with V
 - 4. If V is not associated with any prime \Rightarrow V is empty
 - 5. (F)EN should not distinguish yers from EN

- No problem if yer = SN
 - SN *project* a melodic prime ⇒ the prime is integrated in the phonological string
 - \blacksquare EN can 'see' the prime \Rightarrow FEN can distinguish between EN and SN

- No problem if yer = SN
 - SN *project* a melodic prime ⇒ the prime is integrated in the phonological string
 - $lue{}$ EN can 'see' the prime \Rightarrow FEN can distinguish between EN and SN


- Getting rid of *magic* licensing (*s*TRV)
 - /s/ spreads to the EN between 'its' C and the following C (Carvalho 2017; Prince & Ferré 2020; Scheer & Segeral 2020)

- Syllabicity of C
 - "Potentially-syllabic consonants /l,n/ must always be associated to a V-slot" (Faust 2022)

- Getting rid of *magic* licensing (*s*TRV)
 - /s/ spreads to the EN between 'its' C and the following C (Carvalho 2017; Prince & Ferré 2020; Scheer & Segeral 2020)

- Syllabicity of C
 - "Potentially-syllabic consonants /I,n/ must always be associated to a V-slot" (Faust 2022)

- Orthodox use of association relations (strict CV & standard ET)
 - Representing length
 - C:= melodic prime associated to 2 C
 - V₂= melodic prime associated to 2 V
 - Defining the phonetic interpretation
 - |A|, |I|, |U|, |A.U| in V = [9], [i], [u], [0]
 - \blacksquare |A|, |I|, |U|, |A.U| in C = [r], [j], [w], [I]

- Orthodox use of association relations (strict CV & standard ET)
 - Representing length
 - C:= melodic prime associated to 2 C
 - V:= melodic prime associated to 2 V
 - Defining the phonetic interpretation
 - $= |A|, |I|, |O|, |A.O| |II| |V [\theta], [I], |$
 - \blacksquare |A|, |I|, |U|, |A.U| in C = [r], [j], [w], [l]

- Orthodox use of association relations (strict CV & standard ET)
 - Representing length
 - C:= melodic prime associated to 2 C
 - V:= melodic prime associated to 2 V
 - Defining the phonetic interpretation
 - \blacksquare |A|, |I|, |U|, |A.U| in V = [ə], [i], [u], [o]
 - |A|, |I|, |U|, |A.U| in C = [r], [j], [w], [l]

- Heterodox use of association relations
 - /s/s surfaces as $[s] \Rightarrow$ neither long nor syllabic

 \blacksquare /n/ surfaces as $[n] \Rightarrow$ neither long nor consonantal

- Heterodox use of association relations
 - /s/s surfaces as $[s] \Rightarrow \overline{\text{neither long nor syllabic}}$

■ /n/ surfaces as $[n] \Rightarrow$ neither long nor consonantal

- A coherent doxa
 - lacktriangledown /s/ is projected by C_2 and $V_2 \Rightarrow /s/$ 'is' both a C and a V
 - /s/ is pronounced only in $C_2 \Rightarrow /s/$ surfaces as [s]

- \blacksquare /n/ is projected by C₃ and V₂ \Rightarrow /n/ 'is' both a C and a V
- \blacksquare /s/ is pronounced only in $V_2 \Rightarrow /n/$ surfaces as [n]

- A coherent doxa
 - lacktriangledown /s/ is projected by C_2 and $V_2 \Rightarrow /s/$ 'is' both a C and a V
 - /s/ is pronounced only in $C_2 \Rightarrow /s/$ surfaces as [s]

- \blacksquare /n/ is projected by C₃ and V₂ \Rightarrow /n/ 'is' both a C and a V
- /s/ is pronounced only in $V_2 \Rightarrow /n/$ surfaces as [n]

EA - Discarding alternatives

- $\blacksquare \ / \mathsf{lebs}/\text{-}/\mathsf{t}/_{1\mathrm{SG}} \to [\mathsf{le'best}] \Rightarrow \mathsf{FEN} \ \mathsf{parameter} \ \mathsf{ON}$
- ${\color{red} \bullet / lebs/\text{-}/t/_{3_{\rm F.SG}} \to ['lebset] \Rightarrow {\sf FEN} \ parameter \ {\sf OFF} }$

What if the 3F.SG marker were different?

EA - Discarding alternatives

- $\blacksquare \ / \mathsf{lebs}/\text{-}/\mathsf{t}/_{1\mathrm{SG}} \to [\mathsf{le'best}] \Rightarrow \mathsf{FEN} \ \mathsf{parameter} \ \mathsf{ON}$
- ${\color{red} \bullet / lebs/\text{-}/t/_{3_{\rm F.SG}} \to ['lebset] \Rightarrow {\sf FEN} \ parameter \ {\sf OFF} }$

What if the 3F.SG marker were different?

EA - Discarding alternatives - I

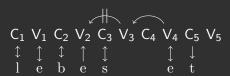
- $\hspace{0.1in} \blacksquare \hspace{0.1in} / \mathsf{lebs} / \mathord{\text{--}} / \mathsf{t} / \mathord{\text{1}}_{\mathrm{SG}} \to \mathsf{[le'best]} \Rightarrow \mathsf{FEN} \hspace{0.1in} \mathsf{parameter} \hspace{0.1in} \mathsf{ON}$
- $\hspace{0.1in} \rule{0.2cm}{0.8em}\hspace{0.2em} \hspace{0.2em} \hspace{0$

$$\begin{array}{ccc} \mathsf{C}_1 \ \mathsf{V}_1 \ \mathsf{C}_2 \ \mathsf{V}_2 \\ & \updownarrow & \updownarrow \\ & \mathrm{e} & \mathrm{t} \end{array}$$

 \blacksquare V₁ = full N \Rightarrow V₂ *PGs V₁ \Rightarrow no problems with FEN parameter ON

71 / 75

EA - Discarding alternatives - I


- $\blacksquare \ / \mathsf{lebs}/\text{-}/\mathsf{t}/_{1\mathrm{SG}} \to [\mathsf{le'best}] \Rightarrow \mathsf{FEN} \ \mathsf{parameter} \ \mathsf{ON}$
- $\hspace{0.1in} \rule{0.2cm}{0.8em}\hspace{0.2em} \hspace{0.2em} \hspace{0$

$$\begin{array}{cccc} \mathsf{C}_1 \ \mathsf{V}_1 \ \mathsf{C}_2 \ \mathsf{V}_2 \\ & \updownarrow & \updownarrow \\ & \mathrm{e} & \mathrm{t} \end{array}$$

■ $V_1 = \text{full N} \Rightarrow V_2 * PGs V_1 \Rightarrow \text{no problems with FEN parameter ON}$

EA - Discarding alternatives - I

- /lebs/-/et/_{3F.SG}
 - \blacksquare V₄ PGs V₃ \Rightarrow V₃ *PGs V₂
 - \blacksquare /lebs-et/ \rightarrow *[lebset]
 - Possible way-out (?): removal of V₃-C₄ (Gussmann & Kaye 1993)

EA - Discarding alternatives - II

- /lebs/-/-et/_{3F.SG}
 | /e/ = floating prime

Discarding alternatives - II

- /lebs/-/ $^{\rm e}$ t/ $_{
 m 3F.SG}$ & FEN parameter ON
 - lacktriangle V₄ PGs V₃ \Rightarrow no floating prime integration \Rightarrow V₃ *PGs V₂
 - lacktriangledown /lebs- $^{
 m e}$ t/ ightarrow *['lebest]

Discarding alternatives - II

- $/lebs/-/et/_{3F.SG}$ & FEN parameter OFF
 - V_4 *PGs $V_3 \Rightarrow$ floating prime integration $\Rightarrow V_3$ PGs V_2
 - \blacksquare /lebs- e t/ \rightarrow ['lebset]

■ This works iif FEN parameter is OFF and 1sg has a FSN (Fathi 2013)

Discarding alternatives - II

- /lebs/-/et/_{3F.SG} & FEN parameter OFF
 - V_4 *PGs $V_3 \Rightarrow$ floating prime integration $\Rightarrow V_3$ PGs V_2
 - \blacksquare /lebs- e t/ \rightarrow ['lebset]

lacktriangle This works iif FEN parameter is OFF and $1\mathrm{SG}$ has a FSN (Fathi 2013)