Lexically restricted phonological alternation: the case for via-rules

Ricardo Bermúdez-Otero
University of Manchester

PREVIEW OF THE ARGUMENT

§1 This talk addresses lexically restricted phonologically driven alternation.
Case study: vocalic alternations in Spanish $3^{\text {rd }}$-conjugation verbs (Bermúdez-Otero 2016)
e.g.
1PL.PRS.IND
1PL.PRS.SBJV

sent-i-r	
sent-í-mos	
sint-á-mos	\leftarrow 'raising'
sjént-e	\leftarrow 'diphthongization'
'feel'	

§2 Raising submits to a simple autosegmental analysis in which both alternants derive from a single underlier containing a floating feature (Scheer 2016: §6, Trommer 2019).

However, two sources of evidence indicate that Spanish learners fail to adopt this autosegmental solution and, instead, encode the alternation as an instance of listed allomorphy:
$\begin{array}{ll}\text { (i) behavioural } & \text { wug-tests } \\ \text { (ii) neurolinguistic } & \text { event-related potentials }\end{array}$
$\}($ Linares et al. 2006)
§3 This raises the question: what is stored, root-allomorphs or stem-allomorphs?
Three types of evidence support stem-storage (Bermúdez-Otero 2013):
(i) internal the local domain for selection is the second cycle;
(ii) psycholinguistic recognition latencies are predicted by the token frequency of stems, rather than that of roots or of wordforms;
(iii) diachronic the levelling of allomorphy is confined to single lexemes.
§4 However, an analysis of lexically restricted phonologically driven alternation that relies on suppletion faces three challenges:
(i) the putative instances of suppletion falls into a small set of recurrent patterns (Harley \& Tubino Blanco 2013: 124);
(ii) there are islands of reliability in which new suppletive stems are highly acceptable (Albright 2002b, Albright \& Hayes 2003);
(iii) children's learning performance in the acquisition of irregulars depends not on the token frequency of an individual item, but on the aggregated token frequency of its class (Yang 2005).
$\S 5$ To resolve the tension between $\S 2-\S 3$ and $\S 4$, I propose that
the lexical entries of weakly suppletive stems are linked by via-rules (Vennemann 1972: 225), i.e. by nondirectional, nongenerative, relational schemata (Tiersma 1978: 65, Jackendoff \& Audring 2018).

Via rules - are unproductive, but - serve to overcome an anti-alternation bias in acquisition.
§6 Weak suppletion mediated by via-rules supplies a missing element in the taxonomy of alternations generated by Stratal Phonology (Bermúdez-Otero 2019).

SINGLE UNDERLIER OR STORED ALLOMORPHY?

Vocalic alternations in Spanish $3^{\text {rd }}$-conjugation verbs

§7 Spanish verbs fall into three inflectional classes distinguished by their theme vowels:

- $1^{\text {st }}$ conjugation theme vowel $-a$ - e.g. [kant-á- $\left.c\right]$ 'sing-TH-INF’
- $2^{\text {nd }}$ conjugation theme vowel $-e-$ e.g. [be $\beta-$ é-r] 'drink-TH-INF'
- $3^{\text {rd }}$ conjugation theme vowel -i- e.g. $[\mathrm{bi} \beta-\mathrm{i}-\mathrm{c}]$ ' live-TH-INF'

The $1^{\text {st }}$ conjugation is the default; the $2^{\text {nd }}$ and $3^{\text {rd }}$ are synchronically closed.
The $3^{\text {rd }}$ conjugation contains the smallest number of verbs.

'Raising'

(i) The root-final syllable shows [e, o] if the following syllable is headed by [i], [i, u] elsewhere.
(ii) The distribution of the alternants is automatic and exceptionless: e.g. pedir 'ask for' e.g. inflection

	PRS.IND	PRS.SBJV	IPFV.IND	IPFV.SBJV	PRET
1SG	píðo	píða	peðía	piðjése	peðí
2SG	píðes	píðas	peðías	piðjéses	peðíste
3SG	píðe	píð	peðía	piðjése	piðjó
1PL	peðímos	piðámos	peðíamos	piðjésemos	peðímos
2PL	peðís	piðájs	peðíamos	piðjésemos	peðímos
3PL	píðen	píðan	peðían	piðjésen	piðjéron

derivation	piô-jé-nte	'who asks for something'
	piot-ón	'one who asks for things importunately'
	peð-i-ðór	'one who asks for something'
	peð-í-ßle	'which may be asked for'
	ped-itje	= piðón (Mex.; cf. aß1-á-c ~ aßl-ítje; Lope Blanch 1992)

(iii) Participation in the alternation is idiosyncratic and unpredictable:

high only			1PL.PRS.SBJV	1PL.PRS.IND
	vivir	'live'	bi β-á-mos	bi β-í-mos
	fundir	'melt'	fund-á-mos	fund-í-mos
high \sim mid	pedir	'ask for'	pir-á-mos	peð-í-mos
	dormir	'sleep'	durm-á-mos	dorm-í-mos
mid only	divergir	'diverge'	dißerx-á-mos	dißerx-í-mos
low only	partir	'split'	part-á-mos	part-í-mos

(iv) Type frequencies:

Figures from a comprehensive list of 11,095 Spanish verbs (Boyé \& Cabredo Hofherr 2004)

- Raising in 27% of $3^{\text {rd }}$-conjugation verbs with nonlow root vowels 146 out of 543 24% of all $3^{\text {rd }}$-conjugation verbs " " 601 1% of all verbs " " 11,095
- A skew among $3^{\text {rd }}$-conjugation verbs with nonlow root vowels:

Non-alternating mid-vowelled $3^{\text {rd }}$-conjugation verbs are highly under-represented.

Diphthongization

$\begin{array}{lll}\text { (i) The root-final syllable shows } & \begin{array}{l}\text { diphthongal }[\mathrm{je}, \mathrm{we}] \\ \text { monophthongal }[\mathrm{i}, \mathrm{e}, \mathrm{u}, \mathrm{o}]\end{array} & \begin{array}{l}\text { under primary stress } \\ \text { elsewhere. }\end{array}\end{array}$
(ii) Again, the distribution of the alternants is automatic and exceptionless (Bermúdez-Otero 2013: 61-62).
(iii) Unlike raising, diphthongization occurs in lexical items of all categories (Bermúdez-Otero 2013: 60-61), but only in verb do diphthongs alternate with high as well as mid vowels.

Raising and diphthongization are orthogonal to each other:
1PL.PRS.SBJV 1PL.PRS.IND 3SG.PRS.IND

high \sim mid	
alternation?	diphthongal alternation?

vivir 'live'	bi β-á-mos	bi β-í-mos	bíß-e	x	x
divergir 'diverge'	dißerx-á-mos	dißerx-í-mos	dißérx-e	x	x
adquirir 'acquire'	$\mathrm{a}^{\chi} \mathrm{k}$ kic-á-mos	$\mathrm{a}^{\chi} \mathrm{kir}^{\text {cin }}$ - mos	$\mathrm{a}^{\text {¢ }}$ kjéce	x	\checkmark
discernir 'discern'	disӨern-á-mos	disӨern-í-mos	dis θ jérn-e	x	\checkmark
pedir 'ask for'	piot-á-mos	peð-í-mos	pío-e	\checkmark	x
sentir 'feel'	sint-á-mos	sent-í-mos	sjént-e	\checkmark	\checkmark

Raising as phonologically conditioned suppletion

§10 It is technically straightforward to reduce the raising alternation to phonological derivation from a single underlier (e.g. Pérez Herrera 2022).

One approach: • raising verbs have an underlying high vowel (the elsewhere option),

- but also a floating [-hi] feature;
- [-hi] docks when needed to avoid OCP violations (dissimilation).

§11 But in Bermúdez-Otero (2016) I pursued instead an analysis involving phonologically driven allomorph selection (see Iosad 2019 for a parallel from Russian):
- raising verbs have two listed stem-allomorphs;
- the high-vowelled allomorph is the elsewhere form because mid vowels are marked;
- but the mid-vowelled allomorph is selected when needed to avoid OCP violations.

NB Selection must operate by output optimization because
(i) it is driven by phonological markedness;
(ii) it is sensitive to the quality of the following vowel in the output, not the input;
(iii) it reverses the subcategorization preferences of theme vowels.

Behavioural evidence

$\S 12$ Wug-test involving nonce $3^{\text {rd }}$-conjugation verbs
(Linares et al. 2006)
(i) First condition: cue to alternating (raising) behaviour

stimulus	first <redir> INF,	then <rido> 1SG.PRS.IND
target	3PL.PRS.IND	
results	$79 \% \quad$ <riden>	(raising: pedir-type response)

(ii) Second condition: no cue to alternating (raising) behaviour

stimulus	<redir> INF only		
target	3PL.PRS.IND		
results	75%	<reden>	(no alternation: divergir-type response)
	19%	<riden>	(raising: pedir-type response)
	6%	<rieden>	(diphthongization: discernir/sentir-type response)

§13 The results of the wug-test (second condition) involve a gross departure from relative lexical frequencies: cf. §8(iv)

> root-final vowel under stress lexical data $(155$ types $)$
> experimental results
$3^{\text {rd }}$-conjugation verbs with root-final [e] in INF
[í]
[jé]
[é]
46.5\% (72)
6%
6.5\% (10)

§14 Cf. lexical probability matching in phonological neutralization (see e.g. Moore-Cantwell 2019)

- When alternations involve genuine phonological neutralization, responses to wug-tests approximate relative lexical probabilities:
e.g. Dutch laryngeal neutralization (Ernestus \& Baayen 2003)

wug stimulus	responses	
Ik tif	tiftə or	tivdə
Ik daup	dauptə or	daubdə
Ik dent	dentə or	dendə

lexical data experimental data

- But wug-test responses match lexical probabilities far less well in cases of arbitrary lexical patterns (Becker et al. 2011, Hayes et al. 2009).

A bistorical comparison: the levelling of rbotacism alternations in Latin $3^{\text {rd }}$-declension nouns
(i) Projecting NOM.SG forms from GEn.SG forms in Preclassical Latin (Albright 2002a):

	confidence score	example	
$[\mathrm{oris}]_{\text {GEN.SG }} \rightarrow[\mathrm{or}]_{\text {NOM.SG }} /[\mathrm{X}]_{\text {polysyl,-neut___ }} \#$	0.723	soror~soro:ris	'sister'
$[\mathrm{o}: \mathrm{ris}]_{\mathrm{GEN.SG}} \rightarrow[\mathrm{o}: \mathrm{s}]_{\text {NOM.SG }} /[\mathrm{X}]_{\text {polysyl,_neut___ }}$ \#	0.611	hono:s~hono:ris	'honour'
$[\mathrm{eris}]_{\mathrm{GEN} . S \mathrm{G}} \rightarrow[\mathrm{us}]_{\text {Nom.SG }} /[\mathrm{X}]_{\text {polysyl, }+ \text { neut___ }} \#$	0.643	opus \sim operis	'work'
	0.374	aker~akeris	'maple'
$[\text { oris }]_{\text {GEN.SG }} \rightarrow[\mathrm{us}]_{\text {NOM.SG }} /[\mathrm{X}]_{\text {polysyl } \text {, } \text { neut___ }} \#$	0.545	korpus \sim korporis	'body'
$[\mathrm{Vris}]_{\text {GEN.SG }} \rightarrow[\mathrm{Vr}]_{\text {Nom.SG }} /[\mathrm{X}]_{\text {+neut___ }}$ \#	0.198	marmor marmoris	'marble'

(ii) Levelling in Classical Latin: hono:s~hono:ris > honor~hono:ris

The high-confidence alternation pattern of soror is extended to honōs.
Cf. absence of change in

aker~akeris	*akus
marmor \sim marmoris	
*marmus	

Why are the high-confidence patterns of opus and corpus not extended to these forms?
(iii) Bermúdez-Otero’s (2018: §3) answer:

- Levelling in bonōs involves simple UR-restructuring: /hono:s-/ > /hono:r-/
- But the alternation pattern of opus is synchronically suppletive in Classical Latin.

Neurolinguistic evidence

§16 Event-related potentials (ERPs) in electroencephalographic (EEG) study (Linares et al. 2006) ERP
(i) First condition: wrong agreement marker
<pides> 2SG.PRS.IND for <piden> 3PL.PRS.IND enhanced P600
(ii) Second condition: wrong stem allomorph
unraised * <peden> for <piden> 3PL.PRS.IND attenuated N400
Usual interpretation: enhanced P600 = combinatorial violation
attenuated N400 = lexical access effects
$\Rightarrow \quad{ }^{*}<$ peden $>$ is lexically, not grammatically, deviant
§17 In conclusion, the raising alternation is synchronically suppletive, as per §11.

ROOT ALLOMORPHY OR STEM ALLOMORPHY?

§18 Two morphological traditions (Bermúdez-Otero 2013, 2016):

- root-driven full decomposition, single-terminal insertion, no lexical redundancy, etc (e.g. classical DM: Embick \& Halle 2005, Embick 2017)
- stem-driven competition between decomposition and direct access, storage of complex expressions, lexical redundancy, etc
(e.g. Jackendoff 1975, Jackendoff \& Audring 2018)

Raising as root-specific phonology (Embick 2012)

§19 Syntax of [piðón] 'one who asks for things importunately' (§8ii)

§20 Root-specific phonological change (Embick 2012: 33)
Dissimilation: $\quad i \rightarrow e / ~ _~(C) i \quad<f o r ~ t h e ~ s p e c i f i e d ~ c l a s s ~ o f ~ R o o t s>~$
Violates modularity! See Bermúdez-Otero (2012), Scheer (2011), Trommer (2015), Haugen (2016).
§21 Dissimilation produces the wrong outcome if applied early in spell-out:

$1{ }^{\text {st }}$ spell-out cycle	vocabulary insertion	pid-i	
	dissimilation	pé.di	
$2^{\text {nd }}$ spell-out cycle	vocabulary insertion	pé.di-on	
	truncation	*pe.dón	the target is [pi.dón]

Same problem as with diphthongization:
application in the first cycle of root-to-stem derivation gives the wrong results.
§22 Intended derivation:

		pidón	pedidor
first cycle	insertion	pid-i	pid-i
second cycle	insertion	pí.di-on	pí.di-dor
	truncation	pi.dón	-
postcycle	dissimilation	-	pe.ði.ðór

But this is a massive violation on inward cyclic locality:
dissimilation has access to the root in the postcyclic phonology!
Cf. Orgun \& Inkelas (2002), Bermúdez-Otero (2012: 44, 81-82).
Disappointing relaxation of locality (cf. Embick 2010: 101).

Raising as stem allomorphy (Bermúdez-Otero 2016)

§23 Key ideas:

- The Spanish lexicon stores stem allomorphs, rather than root allomorphs:

i.e.	not	$/ \downarrow$ pid-/	\sim	$/ \checkmark$ ped-/
	but	$/$ veid-i/	\sim	$/$ ved-i-/

- Each stem defines a cyclic domain by itself
(pace Myler 2015: 175-176; see Bermúdez-Otero 2016: 408-413 for empirical counterevidence from high vocoid syllabification).
- When two stem allomorphs compete, the domain for selection is the cyclic domain triggered by the first syntactic operation on the stem.
§24
a. word syntax

b. underlying phonological representation

$$
\left[{ }^{S \Sigma}\left\{\begin{array}{l}
{\left[{ }^{[S \Sigma} \text { pid-i }\right]} \\
{\left[{ }^{[S} \text { ped-i }\right]}
\end{array}\right\}_{\alpha} \quad-\text { on }_{\beta}\right]_{\gamma}
$$

c. phonological derivation

$$
\begin{array}{llll}
& \text { input } & & \text { output } \\
\text { first cycle (5£) } & \text { /pid-i/ } & \rightarrow & \text { [pí.di] } \\
\text { /ped-i/ } & \rightarrow & \text { [pé.di] }
\end{array}
$$

Additional evidence for stem storage

§25 Stem storage predicts that allomorphy fails to cross lexical category boundaries

- The verb cont-a-r 'tell' participates in the diphthongal alternation because it has two listed stem allomorphs: /v kont-a/ and /v kwent-a/.
- But there is nothing to guarantee that a noun derived from the root $\sqrt{\text { CONT }}$ will also have two listed allomorphs; the noun may not alternate.

That is correct!
E.g. the noun cuent-o doesn't alternate in the presence of any affix: [kwént-o] 'story'
[kwent-ér-o] 'story-teller'
[kwent-ist-a] 'story-teller'
See Iosad (2017) for similar evidence from Welsh.
§26 The same phenomenon can be observed in historical change:
e.g. the levelling of the rhotacism alternations in Latin does not cross lexical category boundaries:

e.g.	N	rōbus \sim rōboris	$>$ rōbur rōboris	'oak, strength'
	but A	robus-t-us, $-a,-\mathrm{um}$	no change	'oaken, strong'

§29 The prediction proves correct! Evidence from Domínguez et al. (1999: 488-91, 2000: 394):
(i) CIEGO 'blind' vs vIUDO 'widowed'

- CIEGO is masculine-dominant: frequency of cieg-o(-s) > frequency of cieg-a(-s)
- VIUDO is feminine-dominant: frequency of viudo-ot-s) < frequency of viud-a(-s)
\rightarrow
- recognition speed for cieg-o(-s)
 recognition speed for $\operatorname{cieg}-a(-s)$
- recognition speed for viud $-o(-s)<$ recognition speed for viud $-a(-s)$
(ii) cult-o ‘cultivated.m’ vs bell-o 'beautiful.m’
- frequency of cult-o(-s) = frequency of bell-o(-s)
\rightarrow - recognition speed for cult-o(-s)
even though
- frequency of CULTO < frequency of BELLO
because
- frequency of $c u l t-a(-s) \quad<\quad$ frequency of bell- $a(-s)$
(iii) rat-o-s 'while.PL' vs bot-a-s 'boot.PL'
- frequency of wordform rat-o-s $=$ frequency of wordform bot-a-s yet
- recognition speed for wordform rat-o-s $>$ recognition speed for wordform bot-a-s because
- frequency of stem rat-o(-s) as
- frequency of wordform rat-o (SG) > frequency of wordform bot-a (SG)

VIA-RULES

Three problems for the listing approach to weak suppletion

Failing to capture recurrent patterns
The first problem is lack of insight [...], the 'arbitrariness' issue discussed by Embick and Halle (2005). Listed forms need not bear any relationship to their other alternant or to each other. There is no reason why they should fall into [...] general classes [...], which are characterizable in broadly phonological terms ['raising', 'diphthongization'].
(Harley \& Tubino Blanco 2013: §3.2)
The objection restated as an observation about speaker behaviour:

- In the first condition of Linares et al.'s (2006) wug-test (§12i), participants produced raising alternations 79% of the time when presented with direct overt evidence.
- But responses replicating the alternating pattern of the stimulus would have been much lower if that pattern had no precedent in the Spanish lexicon:
e.g. *fonár~fjéno or *fonár~fjóno

Islands of reliability

Native speakers rate allomorphic alternation as highly acceptable in novel items when the alternation falls in an island of reliability (Albright 2002b, Albright \& Hayes 2003):

e.g. English

spling [splıŋ] ~ splung [splıŋ]
is highly acceptable, given

$$
\begin{array}{ll}
\text { cling } \sim \text { clung } & \text { string } \sim \text { strung } \\
\text { fling } \sim \text { flung } & \text { swing } \sim \text { swung } \\
\text { sling } \sim \text { slung } & \text { wring } \sim \text { wrung } \\
\text { sting } \sim \text { stung } &
\end{array}
$$

(Bybee \& Moder 1983, Prasada \& Pinker 1993, Albright \& Hayes 2003)

Item frequency vs class frequency in learning
Children's learning performance in the acquisition of English irregular verbs depends not on the token frequency of an individual item, but on the aggregated token frequency of its class (Yang 2005).

The following data from are from Yang (2005: 304):

Figure 3. Frequency effects under the WR model

Figure 4. Frequency effects within irregular classes

A solution: via-rules

All three problems disappear if we assume that, in cases of weak suppletion, listed allomorphs are linked by nondirectional, nongenerative, relational lexical schemata

An old idea: - the term 'via-rule' was popularized by Vennemann (1972: 224-232) and Hooper (1976);

- supported with diachronic evidence by Tiersma (1978);
- direct precursors of Jackendoff \& Audring's (2018) 'non-productive schemata'.

The raising via-rule

$$
\left[V_{\text {stem }} \ldots \mathrm{e}_{0} \mathrm{i}\right] \sim\left[V_{\text {stem }} \ldots \mathrm{iC}_{0} \mathrm{i}\right]
$$

(i) Via-rules are nongenerative.

Therefore, they play no role in production, and they do not enable probability matching, cannot trigger the systematic extension of allomorphic patterns.
(ii) Via-rules play a role in lexical acquisition.

Learners are subject to a very general anti-alternation bias
[McCarthy 1998; Hayes 2004; Tessier 2006, 2016; Do 2013, 2018]
but they accept new alternating items in a range of circumstances:
a. if the alternation can be generated by their current phonological grammar
b. if the alternation matches a pattern of allomorphy encoded in a via-rule
c. if the alternating items occur extremely frequently
,
a. regular alternation
b. weak suppletion
c. strong suppletion

A taxonomy of non-automatic alternation in Stratal Phonology (Bermúdez-Otero 2019)

	systematic extension?	type of frequency effects
strong suppletion	impossible 1	item 3
weak suppletion	impossible 1	class 3
stem-level phonology	possible 2	relative (base/derivative)

```
1 Bermúdez-Otero (2018)
2 Bermúdez-Otero (2012: 28, 74)
3 See §32 above.
```


CONCLUSIONS

§37 A highly lexically-restricted alternation such as raising in Spanish third-conjugation verbs is best analysed as involving phonologically-driven allomorph selection, despite the availability of a relatively simple single-UR analysis.

The stored allomorphs are of stem-size, not root-size.
This type of weak suppletion differs both from strong suppletion and from regular phonology. Its properties are nicely captured by nongenerative relational lexical schemata: via-rules.

REFERENCES

Albright, Adam. 2002a. The identification of bases in morphological paradigms. Los Angeles: Doctoral dissertation, UCLA.
Albright, Adam. 2002b. Islands of reliability for regular morphology: evidence from Italian. Language 78, 684-709.
Albright, Adam \& Bruce Hayes. 2003. Rules vs. analogy in English past tenses: a computational/experimental study. Cognition 90 (2), 119-161.
Baayen, Harald, Robert Schreuder, Niva de Jong \& Andrea Krott. 2002. Dutch inflection: the rules that prove the exception. In Sieb Nooteboom, Fred Weerman \& Frank Wijnen (eds.), Storage and computation in the language faculty (Studies in Theoretical Psycholinguistics), 61-92. Dordrecht: Kluwer.
Becker, Michael, Nihan Ketrez \& Andrew Nevins. 2011. The surfeit of the stimulus: analytic biases filter lexical statistics in Turkish laryngeal alternations. Language 87 (1), 84-125.
Bermúdez-Otero, Ricardo. 2012. The architecture of grammar and the division of labour in exponence. In Jochen Trommer (ed.), The morphology and phonology of exponence (Oxford Studies in Theoretical Linguistics 41), 8-83. Oxford: Oxford University Press.
Bermúdez-Otero, Ricardo. 2013. The Spanish lexicon stores stems with theme vowels, not roots with inflectional class features. Probus 25 (1), 3-103.
Bermúdez-Otero, Ricardo. 2016. We do not need structuralist morphemes, but we do need constituent structure. In Daniel Siddiqi \& Heidi Harley (eds.), Morphological metatheory (Linguistics Today 229), 387-430. Amsterdam: John Benjamins.
Bermúdez-Otero, Ricardo. 2018. In defence of underlying representations: Latin rhotacism, French liaison, Romanian palatalization. Probus 30 (2), 171-214.
Bermúdez-Otero, Ricardo. 2019. Alternation types: computation, storage, bistoryu. Brugmann Fellow course, University of Leipzig, July 2019. http://www.bermudez-otero.com/research.htm\#Leipzig.
Boyé, Gilles \& Patricia Cabredo Hofherr. 2004. Étude de la distribution des suffixes -er/-ir dans les infinitifs de l'espagnol à partir d'un corpus exhaustif. Corpus 3, 237-260. Available online at http://corpus.revues.org/ document227.html.
Bybee, Joan \& Carol L. Moder. 1983. Morphological classes as natural categories. Language 59, 251-270.

Do, Young Ah. 2013. Biased learning of phonological alternations. Doctoral thesis, MIT.
Do, Young Ah. 2018. Paradigm uniformity bias in the learning of Korean verbal inflections. Pbonology 35 (4), 547575.

Domínguez, Alberto, Fernando Cuetos \& Juan Seguí. 1999. The processing of grammatical gender and number in Spanish. Journal of Psycholinguistic Research 28 (5), 485-498.
Domínguez, Alberto, Fernando Cuetos \& Juan Seguí. 2000. Morphological processing in word recognition: a review with particular reference to Spanish data. Psicológica 21, 375-401.
Embick, David. 2010. Localism versus globalism in morphology and phonology (Linguistic Inquiry Monographs 60). Cambridge, MA: The MIT Press.
Embick, David. 2012. Contextual conditions on stem alternations: illustrations from the Spanish conjugation. In Irene Franco, Sara Lusini \& Andrés Saab (eds.), Romance languages and linguistic theory 2010: selected papers from 'Going Romance', Leiden, 2010, 21-40. Amsterdam: John Benjamins.
Embick, David. 2017. On the targets of phonological realization. In Vera Gribanova \& Stephanie S. Shih (eds.), The morphosyntax-phonology connection: locality and directionality, 255-284. Oxford: Oxford University Press.
Embick, David \& Morris Halle. 2005. On the status of stems in morphological theory. In Twan Geerts, Ivo van Ginneken \& Haike Jacobs (eds.), Romance languages and linguistic theory 2003: selected papers from 'Going Romance’ 2003, Nijmegen, 20-22 November (Current Issues in Linguistic Theory 270), 37-62. Amsterdam: John Benjamins.
Ernestus, Mirjam \& Harald Baayen. 2003. Predicting the unpredictable: interpreting neutralized segments in Dutch. Language 79 (1), 5-38.
Harley, Heidi \& Mercedes Tubino Blanco. 2013. Cycles, vocabulary items, and stem forms in Hiaki. In Ora Matushansky \& Alec Marantz (eds.), Distributed Morphology today: morphemes for Morris Halle, 117-134. Cambridge, MA: The MIT Press.
Haugen, Jason D. 2016. Readjustment: rejected? In Daniel Siddiqi \& Heidi Harley (eds.), Morphological metatheory (Linguistics Today 229), 303 - 342. Amsterdam: John Benjamins.
Hayes, Bruce. 2004. Phonological acquisition in Optimality Theory: the early stages. In René Kager, Joe Pater \& Wim Zonneveld (eds.), Constraints in phonological acquisition, 158-203. Cambridge: Cambridge University Press.
Hayes, Bruce, Péter Siptár, Kie Zuraw \& Zsuzsa Londe. 2009. Natural and unnatural constraints in Hungarian vowel harmony. Language 85 (4), 822-863.
Hooper [Bybee], Joan. 1976. An introduction to natural generative phonology. New York: Academic Press.
Iosad, Pavel. 2017. Welsh svarabhakti as stem allomorphy. Transactions of the Pbilological Society 115 (2), 141-175.
Iosad, Pavel. 2019. Bringing it all together: the $e \sim o^{\prime}$ alternation in Stratal Phonology. Paper presented at Formal Approaches to Russian Linguistics 3, Moscow State University, 6 April 2019. https://www.anghyflawn.net/presentation/2019/farl3/.
Jackendoff, Ray. 1975. Morphological and semantic regularities in the lexicon. Language 51 (3), 639-671.
Jackendoff, Ray \& Jenny Audring. 2018. Morphology and memory: toward an integrated theory. Topics in Cognitive Science.
Linares, Rafael Enrique, Antoni Rodriguez-Fornells \& Harald Clahsen. 2006. Stem allomorphy in the Spanish mental lexicon: evidence from behavioral and ERP experiments. Brain and Language 97 (1), 110-120.

Lope Blanch, Juan M. 1992. Mex. -che, -i(n)che ¿Nahuatlismo? Nueva Revista de Filología Hispánica 40 (2), 623636.

McCarthy, John J. 1998. Morpheme structure constraints and paradigm occultation. In M. Catherine Gruber, Derrick Higgins, Kenneth Olson \& Tamra Wysocki (eds.), CLS 32, Part 2: The Panels, 123-150. Chicago, IL: Chicago Linguistic Society.
Moore-Cantwell, Claire. 2019. The new status of exceptions when phonology is probabilistic. Paper presented at the $27^{\text {th }}$ Manchester Phonology Meeting, Manchester, 24 May 2019. Slides available at http://www.clairemoorecantwell.org/Moore-Cantwell_27mfm.pdf.
Myler, Neil. 2015. Stem storage? Not proven: a reply to Bermúdez-Otero 2013. Linguistic Inquiry 46 (1), 173-186.
Orgun, Cemil Orhan \& Sharon Inkelas. 2002. Reconsidering bracket erasure. In Geert Booij \& Jaap van Marle (eds.), Yearbook of morphology 2001, 115-146. Dordrecht: Foris.
Pérez Herrera, Claudia Yazmín. 2022. L'alternance baute-moyenne de l'espagnol: Phonologie our morphologie? Montréal: Mémoire de maîtrise, Université du Québec à Montréal.
Prasada, Sandeep \& Steven Pinker. 1993. Generalisation of regular and irregular morphological patterns. Language and Cognitive Processes 8 (1), 1-56.
Scheer, Tobias. 2011. A guide to morphosyntax-phonology interface theories: how extra-phonological information is treated in phonology since Trubetzkoy's Grenzsignale. Berlin: Mouton de Gruyter.
Scheer, Tobias. 2016. Melody-free syntax and phonologically conditioned allomorphy. Morphology 26 (3), 341378.

Tessier, Anne-Michelle. 2006. Biases and stages in phonological acquisition. Amherst, MA: Doctoral dissertation, University of Massachusetts. Available as ROA-883-1106, Rutgers Optimality Archive, http://roa.rutgers.edu.
Tessier, Anne-Michelle. 2016. Phonological acquisition: cbild language and constraint-based grammar. London: Palgrave.
Tiersma, Peter. 1978. Bidirectional leveling as evidence for relational rules. Lingua 45 (1), 65-77.
Trommer, Jochen. 2015. Moraic affixes and morphological colors in Dinka. Linguistic Inquiry 46 (1), 77-112.
Trommer, Jochen. 2019. Rich representations: a tonal view on lexical exceptionality. Paper presented at the $27^{\text {th }}$ Manchester Phonology Meeting, Manchester, 24 May 2019.
Vennemann, Theo. 1972. Rule inversion. Lingua 29, 209-242.
Yang, Charles. 2005. The origin of linguistic irregularity. In James W. Minett \& William S.-Y. Wang (eds.), Language acquisition, change and emergence: essays in evolutionary linguistics, 297-328. Kowloon, Hong Kong: City University of Hong Kong Press.

