Syntactic tiers for movement and agreement Day 1: Representations and the status of tiers

Thomas Graf

Stony Brook University
mail@thomasgraf.net
https://thomasgraf.net

KU Leuven Lecture Series Decmber 5-7, 2023

The big linguistic questions

- What are the laws that govern each structural level?
- Why are those the laws?
- ▶ How **complex** are these laws? How hard are they to compute?
- How are they learned?
- Do we find typological gaps, i.e. patterns that should exist but don't appear in any language?
- What can we infer about human cognition?

The larger program behind syntactic tiers

- grounded in computation
- insights across subfields (e.g. parallels between phonology and syntax)
- take insights from generative grammar, but interpret them in new ways

The big linguistic questions

- What are the laws that govern each structural level?
- Why are those the laws?
- ▶ How **complex** are these laws? How hard are they to compute?
- How are they learned?
- Do we find typological gaps, i.e. patterns that should exist but don't appear in any language?
- What can we infer about human cognition?

The larger program behind syntactic tiers

- grounded in computation
- insights across subfields (e.g. parallels between phonology and syntax)
- take insights from generative grammar, but interpret them in new ways

Outline

1 Strict locality (SL)

2 Tier-Based Strictly Local (TSL)

3 Subregular Syntax: SL & TSL over Trees

- Representing syntactic computations
- Merge is SL
- Move is TSL
- Islands ≡ Blocking

SL & TSL: (T)ier-Based Strictly Local

- Locality is perhaps the most central property of language.
- But locality can be measured in many ways.
- SL and TSL provide very strict notions of locality that work well empirically.

(Tier-Based) Strictly Local Dependencies

- All patterns described by markedness constraints that are
 - inviolable,
 - locally bounded,
 - ► formalized as *n*-grams.
- Non-local dependencies are local over tiers. (Goldsmith 1976; "but there is another...")
- Linguistic core idea:

Dependencies are local over the right structure.

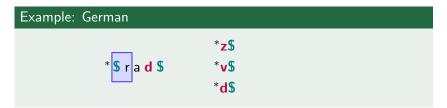
SL & TSL: (T)ier-Based Strictly Local

- Locality is perhaps the most central property of language.
- But locality can be measured in many ways.
- SL and TSL provide very strict notions of locality that work well empirically.

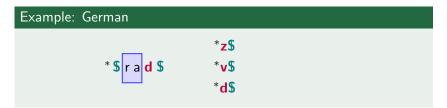
(Tier-Based) Strictly Local Dependencies

- All patterns described by markedness constraints that are
 - inviolable,
 - Iocally bounded,
 - formalized as n-grams.
- Non-local dependencies are local over tiers. (Goldsmith 1976; "but there is another...")
- Linguistic core idea:

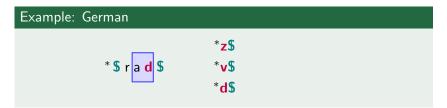
Dependencies are local over the right structure.

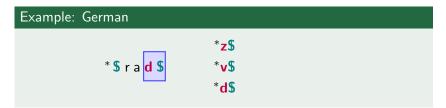

- Captured by forbidding voiced segments at the end of a word
- ► **German**: Don't have **z**^{\$} or **v**^{\$} or **d**^{\$} (where ^{\$} = word edge).

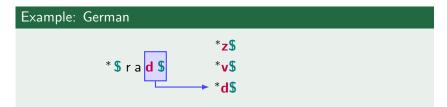
Example: German		
* \$ r a d \$	*z\$ *v\$ *d\$	


- Captured by forbidding voiced segments at the end of a word
- ► **German**: Don't have **z**^{\$} or **v**^{\$} or **d**^{\$} (where ^{\$} = word edge).

Example: German		
	* z\$	
* \$ r a d \$	* v\$	
	* <mark>d\$</mark>	


- Captured by forbidding voiced segments at the end of a word
- ► **German**: Don't have **z**^{\$} or **v**^{\$} or **d**^{\$} (where ^{\$} = word edge).


- Captured by forbidding voiced segments at the end of a word
- **German**: Don't have **z\$** or **v\$** or **d\$** (where **\$** = word edge).


- Captured by forbidding voiced segments at the end of a word
- **German**: Don't have **z\$** or **v\$** or **d\$** (where **\$** = word edge).

- Captured by forbidding voiced segments at the end of a word
- **German**: Don't have **z\$** or **v\$** or **d\$** (where **\$** = word edge).

- Captured by forbidding voiced segments at the end of a word
- ► **German**: Don't have **z\$** or **v\$** or **d\$** (where **\$** = word edge).

- Captured by forbidding voiced segments at the end of a word
- ► **German**: Don't have **z**^{\$} or **v**^{\$} or **d**^{\$} (where ^{\$} = word edge).

Example: German			
* \$ r a d \$	*z\$ *v\$	\$ rat \$	
JIAUJ	*d\$	Jralj	

- Captured by forbidding voiced segments at the end of a word
- ► **German**: Don't have **z**^{\$} or **v**^{\$} or **d**^{\$} (where ^{\$} = word edge).

Example: German			
* \$ r a <mark>d \$</mark>	*z\$ *v\$ *d\$	<mark>\$ r</mark> at \$	

- Captured by forbidding voiced segments at the end of a word
- ► **German**: Don't have **z**^{\$} or **v**^{\$} or **d**^{\$} (where ^{\$} = word edge).

Example: German			
* \$ r a <mark>d \$</mark>	*z\$ *v\$ *d\$	\$rat\$	

- Captured by forbidding voiced segments at the end of a word
- ► **German**: Don't have **z**^{\$} or **v**^{\$} or **d**^{\$} (where ^{\$} = word edge).

Example: German			
* \$ r a <mark>d</mark> \$	*z\$ *v\$ *d\$	\$rat\$	

- Captured by forbidding voiced segments at the end of a word
- ► **German**: Don't have **z**^{\$} or **v**^{\$} or **d**^{\$} (where ^{\$} = word edge).

Example: German		
* \$ r a <mark>d</mark> \$	*z\$ *v\$ *d\$	\$ra <mark>t\$</mark>

- Captured by forbidding voiceless segments between vowels
- ► Description: don't have V[-voice]V
- Suppose:

$$\blacktriangleright [-voice] = \{s, f\}$$

 $\blacktriangleright V = \{a,i,o,u\}$

Compiled out: don't have asa, afa, asi, afi, ...

Example: Northern Italian

* \$ a s o | a \$

- Captured by forbidding voiceless segments between vowels
- ► Description: don't have V[-voice]V
- Suppose:
 - $\blacktriangleright \ [-voice] = \{s, f\}$
 - ► $V = \{a,i,o,u\}$
- Compiled out: don't have asa, afa, asi, afi, ...

Example: Northern Italian

* \$ a s o l a \$

- Captured by forbidding voiceless segments between vowels
- **Description:** don't have V[-voice]V
- Suppose:

$$[-\text{voice}] = \{s, f\}$$

•
$$V = \{a,i,o,u\}$$

Compiled out: don't have asa, a[a, asi, a[i, ...

Example: Northern Italian

- Captured by forbidding voiceless segments between vowels
- **Description:** don't have V[-voice]V
- Suppose:

$$[-\text{voice}] = \{s, f\}$$

•
$$V = \{a,i,o,u\}$$

Compiled out: don't have asa, a[a, asi, a[i, ...

Example: Northern Italian

- Captured by forbidding voiceless segments between vowels
- ► Description: don't have V[-voice]V
- Suppose:
 - $\blacktriangleright \ [-voice] = \{s, f\}$
 - ► $V = \{a,i,o,u\}$

Compiled out: don't have asa, afa, asi, afi, ...

Example: Northern Italian

***\$ a s o | a \$ \$ a z o | a \$**

- Captured by forbidding voiceless segments between vowels
- ► Description: don't have V[-voice]V
- Suppose:

$$\blacktriangleright [-voice] = \{s, f\}$$

 $\blacktriangleright V = \{a,i,o,u\}$

Compiled out: don't have asa, afa, asi, afi, ...

Example: Northern Italian *\$ a s o l a \$ \$ a z o l a \$

- Captured by forbidding voiceless segments between vowels
- ► Description: don't have V[-voice]V
- Suppose:

$$\blacktriangleright [-voice] = \{s, f\}$$

 $\blacktriangleright V = \{a,i,o,u\}$

Compiled out: don't have asa, afa, asi, afi, ...

Example: Northern Italian * \$ a s o l a \$ \$ a z o l a \$

- Captured by forbidding voiceless segments between vowels
- ► Description: don't have V[-voice]V
- Suppose:

$$\blacktriangleright [-voice] = \{s, f\}$$

 $\blacktriangleright V = \{a,i,o,u\}$

Compiled out: don't have asa, afa, asi, afi, ...

Example: Northern Italian *\$ a s o l a \$ \$ a z o l a \$

- Captured by forbidding voiceless segments between vowels
- ► Description: don't have V[-voice]V
- Suppose:
 - $\blacktriangleright \ [-voice] = \{s, f\}$
 - $\blacktriangleright V = \{a,i,o,u\}$

Compiled out: don't have asa, afa, asi, afi, ...

Example: Northern Italian *\$ a s o l a \$ \$ a z o l a \$

- Captured by forbidding voiceless segments between vowels
- ► Description: don't have V[-voice]V
- Suppose:

$$\blacktriangleright [-voice] = \{s, f\}$$

 $\blacktriangleright V = \{a,i,o,u\}$

Compiled out: don't have asa, afa, asi, afi, ...

Example: Northern Italian *\$ a s o l a \$ \$ a z o l a \$

- Captured by forbidding voiceless segments between vowels
- ► Description: don't have V[-voice]V
- Suppose:
 - $\blacktriangleright \ [-voice] = \{s, f\}$
 - ► $V = \{a,i,o,u\}$

Compiled out: don't have asa, afa, asi, afi, ...

Example: Northern Italian

*\$ a s o l a \$ \$ a z o l a \$ \$ a + s o c i a l e \$

- Captured by forbidding voiceless segments between vowels
- ► Description: don't have V[-voice]V
- Suppose:
 - $\blacktriangleright \ [-voice] = \{s, f\}$
 - ► $V = \{a,i,o,u\}$

Compiled out: don't have asa, afa, asi, afi, ...

Example: Northern Italian *\$ a s o l a \$ \$ a z o l a \$ \$ a + s o c i a l e \$

- Captured by forbidding voiceless segments between vowels
- ► Description: don't have V[-voice]V
- Suppose:
 - $\blacktriangleright \ [-voice] = \{s, f\}$
 - $\blacktriangleright V = \{a,i,o,u\}$

Compiled out: don't have asa, afa, asi, afi, ...

Example: Northern Italian *\$ a s o l a \$ \$ a z o l a \$ \$ a + s o c i a l e \$

- Captured by forbidding voiceless segments between vowels
- ► Description: don't have V[-voice]V
- Suppose:
 - $\blacktriangleright \ [-voice] = \{s, f\}$
 - $\blacktriangleright V = \{a,i,o,u\}$

Compiled out: don't have asa, afa, asi, afi, ...

Example: Northern Italian *\$ a sola\$ \$ a zola\$ \$ a + sociale\$

- Captured by forbidding voiceless segments between vowels
- ► Description: don't have V[-voice]V
- Suppose:
 - $\blacktriangleright \ [-voice] = \{s, f\}$
 - $\blacktriangleright V = \{a,i,o,u\}$

Compiled out: don't have asa, afa, asi, afi, ...

Example: Northern Italian *\$ a s o l a \$ \$ a z o l a \$ \$ a + s o c i a l e \$

- Captured by forbidding voiceless segments between vowels
- ► Description: don't have V[-voice]V
- Suppose:
 - $\blacktriangleright \ [-voice] = \{s, f\}$
 - ► $V = \{a,i,o,u\}$

Compiled out: don't have asa, afa, asi, afi, ...

Example: Northern Italian

*\$ a sola \$ \$ a zola \$ \$ a + s ociale \$

- Captured by forbidding voiceless segments between vowels
- ► Description: don't have V[-voice]V
- Suppose:
 - $\blacktriangleright \ [-voice] = \{s, f\}$
 - ► $V = \{a,i,o,u\}$

Compiled out: don't have asa, afa, asi, afi, ...

Example: Northern Italian

*\$ a s o l a \$ \$ a z o l a \$ \$ a + s o c i a l e \$

- Captured by forbidding voiceless segments between vowels
- ► Description: don't have V[-voice]V
- Suppose:
 - $\blacktriangleright \ [-voice] = \{s, f\}$
 - ► $V = \{a,i,o,u\}$

Compiled out: don't have asa, afa, asi, afi, ...

Example: Northern Italian

*\$ a s o l a \$ \$ a z o l a \$ \$ a + s o c i a l e \$

Example: Intervocalic Voicing is SL-3

- Captured by forbidding voiceless segments between vowels
- ► Description: don't have V[-voice]V
- Suppose:
 - $\blacktriangleright \ [-voice] = \{s, f\}$
 - $\blacktriangleright V = \{a,i,o,u\}$

Compiled out: don't have asa, afa, asi, afi, ...

Example: Northern Italian

*\$ a s o l a \$ \$ a z o l a \$ \$ a + s o c i a l e \$

Test Your Might

Exercise

Suppose that a language with CV as the only syllable template exhibits vowel harmony without any neutral vowels or any blockers.

- 1 What is the complexity of vowel harmony in this language?
- 2 What if CVC syllables are also possible?

Exercise

Can you give an example of an SL string dependency in (morpho)syntax?

Outline

1 Strict locality (SL)

2 Tier-Based Strictly Local (TSL)

3 Subregular Syntax: SL & TSL over Trees

- Representing syntactic computations
- Merge is SL
- Move is TSL
- Islands \equiv Blocking

Culminativity

Every phonological word has **exactly one** syllable that carries primary stress.

Culminativity (Rephrased)

Every phonological word has

- at most one syllable that carries primary stress, and
- some syllable that carries primary stress.

Exercise

Explain why culminativity cannot be SL.

- ► If multiple sibilants occur in the same word, they must all be [+anterior] (s,z) or [-anterior] (∫,3).
- In other words: Don't mix purple and teal.

But: Sibilants can be arbitrarily far away from each other!

Example: Samala (Applegate 1972)

*\$hasxintilawa∫\$

\$ha∫xintilawa∫\$

- ► If multiple sibilants occur in the same word, they must all be [+anterior] (s,z) or [-anterior] (∫,3).
- In other words: Don't mix purple and teal.

But: Sibilants can be arbitrarily far away from each other!

Example: Samala (Applegate 1972)

*\$ha<mark>s</mark>×intilawa∫\$

\$ha∫xintilawa∫\$

- ► If multiple sibilants occur in the same word, they must all be [+anterior] (s,z) or [-anterior] (∫,3).
- In other words: Don't mix purple and teal.

But: Sibilants can be arbitrarily far away from each other!

Example: Samala (Applegate 1972)

<mark>*\$ha</mark>sxintilawa∫<mark>\$</mark>

\$ha∫xintilawa∫\$

- ► If multiple sibilants occur in the same word, they must all be [+anterior] (s,z) or [-anterior] (∫,3).
- In other words: Don't mix purple and teal.

But: Sibilants can be arbitrarily far away from each other!

- ► If multiple sibilants occur in the same word, they must all be [+anterior] (s,z) or [-anterior] (∫,3).
- In other words: Don't mix purple and teal.

But: Sibilants can be arbitrarily far away from each other!

- ► If multiple sibilants occur in the same word, they must all be [+anterior] (s,z) or [-anterior] (∫,3).
- In other words: Don't mix purple and teal.

But: Sibilants can be arbitrarily far away from each other!

 Let's take a clue from phonology: create locality with tiers. (Heinz et al. 2011)

Jeff Heinz

Example: Samala Revisited

```
1 Project sibilant tier
```

2 *s∫, *sȝ, *z∫, *zȝ, *∫s, *ȝs, *∫z, *ȝz

*\$ha**s**xintilawa∫\$\$ha∫xintilawa∫\$

 Let's take a clue from phonology: create locality with tiers. (Heinz et al. 2011)

Jeff Heinz

Example: Samala Revisited

```
    Project sibilant tier
```

2 *s∫, *sȝ, *z∫, *zȝ, *∫s, *ȝs, *∫z, *ȝz

*\$hasxintilawa∫\$\$ha∫xintilawa∫\$

 Let's take a clue from phonology: create locality with tiers. (Heinz et al. 2011)

Jeff Heinz

```
Project sibilant tier

      2 *sſ, *sʒ, *zʃ, *zʒ, *ʃs, *ʒs, *ʃz, *ʒz

      $ s ʃ$

      | |

      *$ has xintila waʃ$
```

 Let's take a clue from phonology: create locality with tiers. (Heinz et al. 2011)

Jeff Heinz

```
Project sibilant tier

      2 *sſ, *sʒ, *zʃ, *zʒ, *ʃs, *ʒs, *ʃz, *ʒz

      $ s ſ$ $ ∫

      $ l |
      |

      *$ hasxintilawaſ$
```

 Let's take a clue from phonology: create locality with tiers. (Heinz et al. 2011)

Jeff Heinz

 Let's take a clue from phonology: create locality with tiers. (Heinz et al. 2011)

Jeff Heinz

```
Project sibilant tier

        *sj, *sj, *zj, *zj, *js, *js, *jz, *jz

        $sj, *sj, *zj, *zj, *js, *js, *js, *js

        $sj, *sj, *zj, *zj, *js, *js, *js

        $sj, *sj, *zj, *zj, *js, *js

        $sj, *js, *js, *js

        $sj, *zj, *zj, *js, *js

        $sj, *zj, *zj, *js

        $sj, *js, *js

        $sj, *js, *js
```

 Let's take a clue from phonology: create locality with tiers. (Heinz et al. 2011)

Jeff Heinz

 Let's take a clue from phonology: create locality with tiers. (Heinz et al. 2011)

Jeff Heinz

```
Project sibilant tier

      2 *sſ, *sʒ, *zʃ, *zʒ, *ʃs, *ʒs, *ʃz, *ʒz

      $ s ſ$ $

      $ l |

      *$ hasxintilawaſ$
```

 Let's take a clue from phonology: create locality with tiers. (Heinz et al. 2011)

Jeff Heinz

```
Project sibilant tier

      2 *sſ, *sʒ, *zʃ, *zʒ, *ʃs, *ʒs, *ʃz, *ʒz

      $ s
      $ $ $

      $ s
      $ $ $ $

      *$ hasxintilawaf$
      $ hafxintilawaf$
```

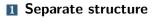
Another TSL Boon: Blocking

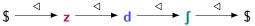
- TSL can also handle blocking effects.
- Slovenian sibilant harmony with blocking
 - 1 [-ant] ... [+ant] is illicit,
 - 2 unless t or d intervenes.
- TSL-2 account
 - 1 project all [-ant], [+ant], t, and d
 - 2 don't have [-ant] [+ant]

Example: Slovenian (Jurgec 2011; McMullin 2016)

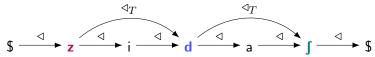
Another TSL Boon: Blocking

- ► TSL can also handle blocking effects.
- Slovenian sibilant harmony with blocking
 - 1 [-ant] ... [+ant] is illicit,
 - 2 unless t or d intervenes.
- TSL-2 account
 - 1 project all [-ant], [+ant], t, and d
 - 2 don't have [-ant] [+ant]


Example: Slovenian (Jurgec 2011; McMullin 2016)


Another TSL Boon: Blocking

- ► TSL can also handle blocking effects.
- Slovenian sibilant harmony with blocking
 - 1 [-ant] ... [+ant] is illicit,
 - 2 unless t or d intervenes.
- TSL-2 account
 - 1 project all [-ant], [+ant], t, and d
 - 2 don't have [-ant] [+ant]


Example: Slovenian (Jurgec 2011; McMullin 2016)

Tiers have many interpretations

2 Additional relation

3 Substructures

▶ without tier: \$z, zi, id, da, a∫, ∫\$

▶ with tier: \$z, zd, d∫, ∫\$

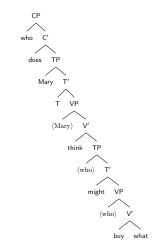
4 Memory configurations

Input	\$	z	i	d	а	ſ	\$
SL-2 memory	-	\$	z	i	d	а	ſ
TSL-2 memory	-	z	z	d	d	ſ	ſ

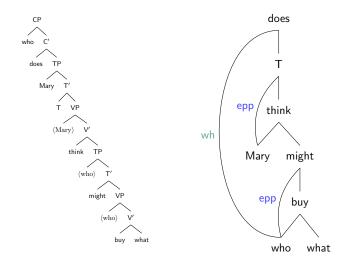
Epistemological modesty: what are tiers?

- Don't get too attached to a specific interpretation of tiers!
- Tiers are a visual metaphor for a computational mechanism:
 Memorize a finite amount of symbols of a specific type
 - In Memorize a finite amount of symbols of a specific type
 - 2 Check the current symbol against the memory configuration
- ► Nothing about this is specific to strings ⇒ tree tiers!

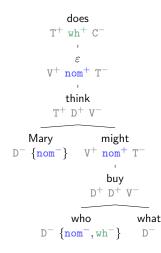
Outline


1 Strict locality (SL)

2 Tier-Based Strictly Local (TSL)


3 Subregular Syntax: SL & TSL over Trees

- Representing syntactic computations
- Merge is SL
- Move is TSL
- Islands ≡ Blocking


Freeing syntax from its output

Freeing syntax from its output

Using diacritics to arborize dependency graphs

Terminology

- ► Category -feature- X⁻
- ► Selector <u>feature</u> X⁺
- ► Licensee <u>feature</u> x⁻
- ► Licensor -feature- x⁺

Original inspiration: Minimalist Grammars

Ed Stabler

- Diacritics inspired by Minimalist grammars (MGs)
- MG: formalization of Minimalist syntax (Stabler 1997, 2011)

A Detailed Merge Example

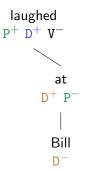
(1) John [$_{\rm VP} t$ laughed at Bill].

- 1 at selects DP (Bill)
- **2 laughed** selects PP (at)
- **3** laughed selects DP (John)

A Detailed Merge Example

(1) John [$_{\rm VP} t$ laughed at Bill].

- 1 at selects DP (Bill)
- **2 laughed** selects PP (at)
- **3** laughed selects DP (John)

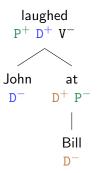


Syntax

A Detailed Merge Example

(1) John [$_{\rm VP} t$ laughed at Bill].

- 1 at selects DP (Bill)
- **2** laughed selects PP (at)
- **3** laughed selects DP (John)



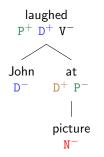
Syntax

A Detailed Merge Example

(1) John [$_{\rm VP} t$ laughed at Bill].

- 1 at selects DP (Bill)
- **2 laughed** selects PP (at)
- **3** laughed selects DP (John)

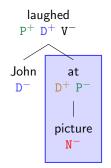
Merge is SL-2

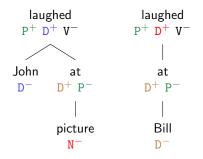

Merge is SL-2 over trees because we only need to look at

- the mother and
- 2 its daughters

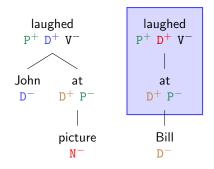
Merge is SL-2

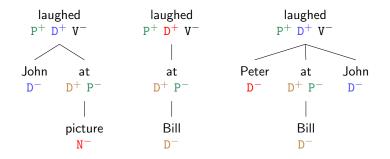
Merge is SL-2 over trees because we only need to look at

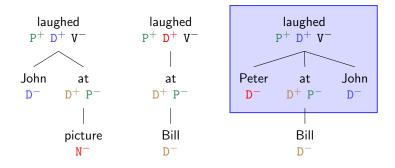

- 1 the mother and
- 2 its daughters

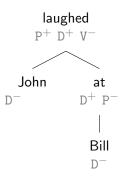

Merge is SL-2

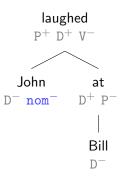
Merge is SL-2 over trees because we only need to look at

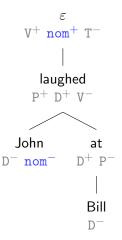

- 1 the mother and
- 2 its daughters

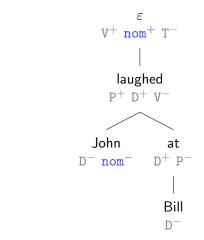

- 1 the mother and
- 2 its daughters

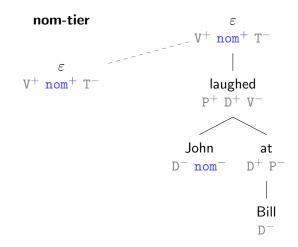

- 1 the mother and
- 2 its daughters

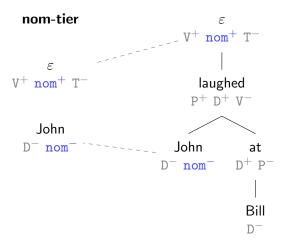


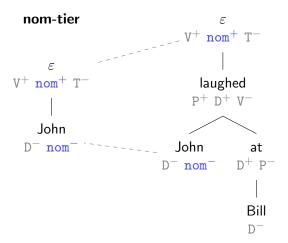

- 1 the mother and
- 2 its daughters

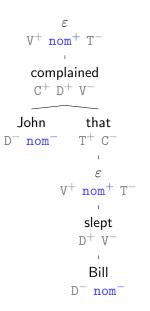


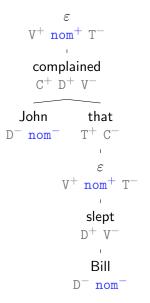

- 1 the mother and
- 2 its daughters



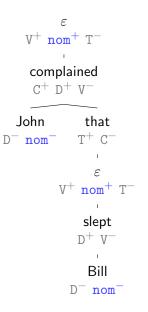








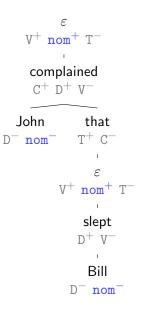
Tier with Multiple Movers


Tier with Multiple Movers

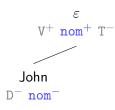
Tier with Multiple Movers

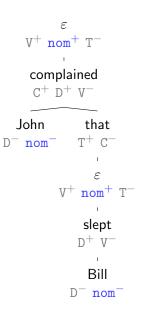
nom-tier

 $\begin{array}{c} \varepsilon \\ {\rm V}^+ \,\, {\rm nom}^+ \,\, {\rm T}^- \end{array}$



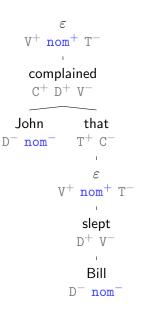
Tier with Multiple Movers

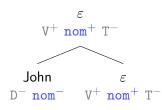

nom-tier

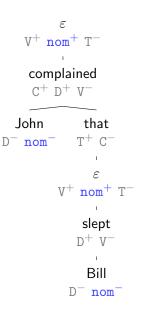

 $\begin{array}{c} \varepsilon \\ {\rm V}^+ \,\, {\rm nom}^+ \,\, {\rm T}^- \end{array}$

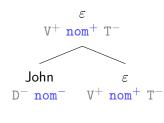
John D⁻ nom⁻

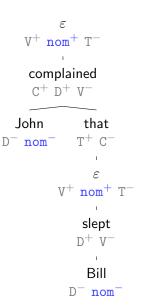



Tier with Multiple Movers

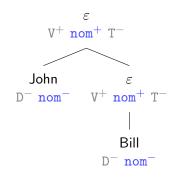


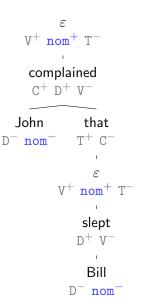

Tier with Multiple Movers


Tier with Multiple Movers

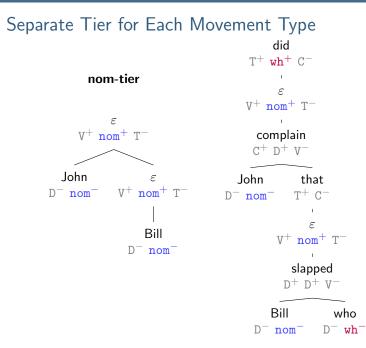


Tier with Multiple Movers


nom-tier



Bill D⁻ nom⁻


Tier with Multiple Movers

Separate Tier for Each Movement Type did T^+ wh $^+$ $C^$ ε V^+ nom⁺ T⁻ 1 complain $C^+ D^+ V^-$ John that $T^+ C^ D^{-}$ nom⁻ ε V^+ nom⁺ T⁻ т slapped $D^+ D^+ V^-$ Bill

Bill who D⁻ nom⁻ D⁻ wh⁻

Strict locality (SL)	Tier-Based Strictly Local (TSL) Syntax	Conclusion	References
Separate Tie	er for Each Mo	vement Type		
Separate Th		did		
		T^+ wh $^+$ C $^-$		
nom-tier		1	wh-tier	
		$arepsilon^{+}$ nom $^{+}$ T $^{-}$		
	ε		did	
\mathbb{V}^+	nom^+ T $^-$	complain	$\mathrm{T^+}~\mathtt{wh^+}~\mathrm{C^-}$	
		C^+ D^+ Λ		
John	ε	John that	who	
D^- nom $^-$	V^+ nom $^+$ T^-	D^{-} nom ⁻ T^{+} C^{-}	D^- wh $^-$	
		I		
	Bill	$arepsilon$ V $^+$ nom $^+$ T	ı—	
	D^{-} nom ⁻	V · nom · 1		
		slapped		
		$D^+ D^+ V^-$	_	
		Bill v	vho	
			wh ⁻	
		2 110111 2		10

Move is TSL-2

- ▶ We now know how to construct movement tiers.
- Licit movement only creates tiers of a specific shape.
- Move is TSL-2 over trees:
 - **1** Every f^- must have an f^+ mother.
 - **2** Every f^+ has exactly one f^- among its daughters.

Cognitive parallelism					
		Phonology	Syntax		
	SL TSL	local dependencies non-local dependencies	<u> </u>		

Move is TSL-2

- We now know how to construct movement tiers.
- Licit movement only creates tiers of a specific shape.
- Move is TSL-2 over trees:
 - **1** Every f^- must have an f^+ mother.
 - **2** Every f^+ has exactly one f^- among its daughters.

Cognitive parallelism				
		Phonology	Syntax	
	SL TSL	local dependencies non-local dependencies	Merge Move	

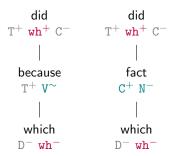
Excursus: making Merge more general

- Dependency format compatible with n-ary Merge Merge(laughed, John, at) instead of Merge(John, Merge(laughed, at))
- Later on, we'll be able to even accommodate unbounded Merge for flat coordination perhaps an evolutionary step between Merge and Move?
- Category & selector features might be inferable from context and thus redundant

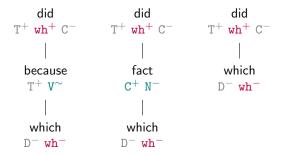
Islands Come for Free

Two Fundamental Questions of Syntax

- Why do islands exist?
- Why do island exceptions exist?


A computational argument

- **1** Movement requires the power of TSL-2.
- **2** TSL-2 can model islands as blocking effects.
- 3 The cognitive ability for movement entails the cognitive ability for islands.


- (2) * Which car did John complain [because Bill damaged t].
- (3) * Which car did John deny [the fact that Bill damaged t].
- (4) Which car did John drive Mary crazy [while trying to fix *t*].

- (2) * Which car did John complain [because Bill damaged t].
- (3) * Which car did John deny [the fact that Bill damaged t].
- (4) Which car did John drive Mary crazy [while trying to fix *t*].

- (2) * Which car did John complain [because Bill damaged t].
- (3) * Which car did John deny [the fact that Bill damaged t].
- (4) Which car did John drive Mary crazy [while trying to fix *t*].

- (2) * Which car did John complain [because Bill damaged t].
- (3) * Which car did John deny [the fact that Bill damaged t].
- (4) Which car did John drive Mary crazy [while trying to fix t].

Impossible Islands

- Islands arise when a blocker is projected onto a tier.
- Tier projection only considers lexical item itself, not its structural context
- TSL-2 theory of islands hence rules out:
 - ► Gang-up islands

"A mover can escape n islands, but not more than that."

Configurational islands

"An adjunct is an island iff it is inside an embedded clause."

Cowardly islands

"An adjunct is an island iff

there are at least two adjuncts in the clause."

Rationed islands

"Only one adjunct per clause can be an island."

Discerning islands

"Adjuncts only block movers that contain an adjective."

Recap: Core concepts

- ► Theory of syntax ≈ theory of computational locality SL strictly local (substructure of fixed size) TSL strictly local over tiers
- Tiers are abstract, don't reify them!
- Derivation as fundamental syntactic representation
- Diacritics (not features!) for encoding dependencies

Recap: Empirical insights

Cognitive parallelism

	Phonology	Syntax
SL	local dependencies	Merge
TSL	non-local dependencies	Move

- blocking \approx islands
- Islands...
 - arise naturally from movement,
 - are correctly predicted to vary across languages,
 - are correctly predicted to be typologically limited.

Acknowledgments

This work is supported by the National Science Foundation under Grant No. BCS-1845344.

References I

- Applegate, Richard B. 1972. *Ineseño Chumash grammar*. Doctoral Dissertation, University of California, Berkeley.
- Goldsmith, John. 1976. Autosegmental phonology. Doctoral Dissertation, MIT.
- Heinz, Jeffrey, Chetan Rawal, and Herbert G. Tanner. 2011. Tier-based strictly local constraints in phonology. In Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, 58–64. URL http://www.aclweb.org/anthology/P11-2011.
- Jurgec, Peter. 2011. Feature spreading 2.0: A unified theory of assimilation. Doctoral Dissertation, University of Tromsø.
- McMullin, Kevin. 2016. *Tier-based locality in long-distance phonotactics: Learnability and typology*. Doctoral Dissertation, University of British Columbia.
- Stabler, Edward P. 1997. Derivational Minimalism. In Logical aspects of computational linguistics, ed. Christian Retoré, volume 1328 of Lecture Notes in Computer Science, 68–95. Berlin: Springer. URL https://doi.org/10.1007/BFb0052152.
- Stabler, Edward P. 2011. Computational perspectives on Minimalism. In Oxford handbook of linguistic Minimalism, ed. Cedric Boeckx, 617–643. Oxford: Oxford University Press.