Syntactic tiers for movement and agreement Day 2: A whirlwind tour of syntactic phenomena

Thomas Graf

Stony Brook University
mail@thomasgraf.net
https://thomasgraf.net

KU Leuven Lecture Series Decmber 5-7, 2023

A little less conversation, a little more action please

- We now have a good idea of how syntactic tiers work.
- Let's apply them to some phenomena!

Outline

Additional remarks on islands Crosslinguistic variation Gradience

2 Probe horizons

- 3 Multiple wh-movement
- 4 Extraction morphology

Capturing variation

Island effects vary in unexpected ways:

- across languages
- across lexical items
- Syntactic tiers can handle both because the tier projection can determine for each lexical item whether it projects.
- Flip side: need a story for why island constraints are still pretty uniform across languages

Accounting for gradience

- There's a huge debate about gradience in island effects.
 - Option 1: island constraints are purely a performance phenomenon
 - Option 2: islands are in the grammar, gradience is a performance phenomenon
 - Option 3: island are gradient constraints in the grammar
- Syntactic tiers are compatible with all three options.
- In particular, syntactic tiers make it easy to combine gradience with standard analyses.
- How? Weighted/Probabilistic tier projection

Gradience

 Tier projection can be made probabilistic to capture gradience (Mayer 2021; Torres et al. 2023)

Calculating gradience with probabilistic wh-tier

- 1 construct all possible versions of the wh-tier
- 2 filter out illicit tiers
- **3** sum up probabilities of remaining tiers

Example calculation

(1) * Who did Bill complain after having a meeting with $\langle who \rangle$ because he's always angry.

ltem	Probability
any wh $^+$	1
any wh $^-$	1
because	.9
after	.8

Possible tiers

Project wh⁺, wh⁻, because, after: .72, illicit
 Project wh⁺, wh⁻, because: .18, licit
 Project wh⁺, wh⁻, after: .08, illicit
 Project wh⁺, wh⁻: .02, licit

Overall probability: .2

Probe horizons VS the Ban on Improper Movement

 Tier-based story for islands also captures probe horizons (Keine 2016, 2019)

Example

- **Probe horizons**: A-movement features cannot probe into CPs
- Syntactic tiers: all C-heads project onto all A-movement tiers
- Syntactic tiers also show us that probe horizons are preferable to the Ban on Improper Movement (BoIM).

Ruling out improper movement via...

Probe horizons : no new tiers needed BoIM : up to $\frac{n^2-n}{2}$ new tiers (where *n* is the number of movement types)

Persistent feature checking as a constraint on tiers

On each f-tier, every \mathtt{f}_∞^+ has at least $1~\mathtt{f}^-$ among its daughters.

Multiple wh-movement is not special

From the TSL-perspective, multiple wh-movement is already part of standard movement:

- Standard movement: every f⁺ has exactly one f⁻ daughter
- ► **TSL:** "exactly one" = "at least one" + "at most one"

multiple wh-movement standard movement - "at most one" standard movement multiple wh-movement + "at most one"

Work to be done...

That's a nice starting point, but we need to account for...

- why there is no multiple nom-movement
- linearization,
- superiority effects/c-command,
- multiple movers with distinct targets,
- the 2-by-2 typology of wh-movement

Multiple wh	Superiority	Example language
-	-	Spanish
-	+	English
+	-	Russian
+	+	Bulgarian

Superiority effects

- Some languages have a limited superiority effect: the highest wh-mover must be first in the wh-cluster
- \blacktriangleright This is just a distributional constraint on wh VS wh_\infty
- That would immediately tell us why superiority and multiple-wh are independent parameters

- **1** Every f^+ has exactly 1 f^- among its daughters.
- **2** Every f^- has f^+ as its mother.

- **1** Every **Positive** has exactly 1 **Negative** among its daughters.
- 2 Every **Negative** has **Positive** as its mother.

- **1** Every **Positive** has exactly 1 **Negative** among its daughters.
- 2 Every **Negative** has **Positive** as its mother.

	Positive on f-tier	Negative on f-tier
f^+	True	False
f^-	False	True

- **1** Every **Positive** has exactly 1 **Negative** among its daughters.
- 2 Every **Negative** has **Positive** as its mother.

	Positive on f-tier	Negative on f-tier
f ⁺	True	False
f^-	False	True
	False	False

- **1** Every **Positive** has exactly 1 **Negative** among its daughters.
- 2 Every **Negative** has **Positive** as its mother.

	Positive on f-tier	Negative on f-tier
f^+	True	False
\mathtt{f}^-	False	True
	False	False
	True	True

- **1** Every **Positive** has exactly 1 **Negative** among its daughters.
- 2 Every **Negative** has **Positive** as its mother.

	Positive on f-tier	Negative on f-tier
f^+	True	False
f^-	False	True
islands	False	False
	True	True

- **1** Every **Positive** has exactly 1 **Negative** among its daughters.
- 2 Every **Negative** has **Positive** as its mother.

	Positive on f-tier	Negative on f-tier
f+	True	False
f^-	False	True
islands	False	False
wh-agreement	True	True

```
did :: T^+wh^+C^-
                 \varepsilon :: V^+ nom^+ T^-
              complain :: P^+D^+V^-
  John :: D^{-} {nom<sup>-</sup>} about :: D^{+}P^{-}
                                 the :: N^+D^-
                                 fact :: C^+N^-
                                 that :: T^+C^-
                               \varepsilon :: V^+ nom^+ T^-
                          brought :: P^+D^+D^+V^-
Mary :: D^{-} {nom<sup>-</sup>} what :: D^{-} {wh<sup>-</sup>} to the party :: P^{-}
```

```
did :: T^+wh^+C^-
                 \varepsilon :: V^+ nom^+ T^-
                                                           did :: T^+wh^+C^-
              complain :: P^+D^+V^-
                                                          what :: D^{-} \{wh^{-}\}
  John :: D^{-} \{nom^{-}\} about :: D^{+}P^{-}
                                the :: N^+D^-
                                fact :: C^+N^-
                                that :: T^+C^-
                              \varepsilon :: V^+ nom^+ T^-
                          brought :: P^+D^+D^+V^-
Mary :: D^{-} {nom<sup>-</sup>} what :: D^{-} {wh<sup>-</sup>} to the party :: P^{-}
```

```
did :: T^+wh^+C^-
                 \varepsilon :: V^+ nom^+ T^-
                                                           did :: T^+wh^+C^-
             complain :: P^+D^+V^-
                                                         what :: D^{-} \{wh^{-}\}
  John :: D^{-} \{nom^{-}\} about :: D^{+}P^{-}
                                the :: N^+D^-
                                fact :: C^+N^-
                                that :: T^+C^-
                              \varepsilon :: V^+ nom^+ T^-
                          brought :: P^+D^+D^+V^-
Mary :: D^{-} {nom<sup>-</sup>} what :: D^{-} {wh<sup>-</sup>} to the party :: P^{-}
```

```
did :: T^+wh^+C^-
                 \varepsilon :: V^+ nom^+ T^-
                                                          did :: T^+wh^+C^-
                                                                                      did :: T^+wh^+C^-
             complain :: P^+D^+V^-
                                                         what :: D^{-} \{wh^{-}\} -
                                                                                        fact :: C^+N^-
  John :: D^{-} \{nom^{-}\} about :: D^{+}P^{-}
                                the :: N^+D^-
                                                                                     what :: D^{-} \{wh^{-}\}
                               fact :: C^+N^-
                               that :: T^+C^-
                              \varepsilon :: V^+ nom^+ T^-
                         brought :: P^+D^+D^+V^-
Mary :: D^{-} {nom<sup>-</sup>} what :: D^{-} {wh<sup>-</sup>} to the party :: P^{-}
```

$$\begin{array}{c} {\rm a}:: \; T^+ {\rm wh}^+ C^- \\ {\rm was}:: \; V^+ {\rm nom}^+ T^- \\ {\rm told}:: \; C^+ D^+ V^- \\ \end{array} \\ {\rm she}:: \; D^- \left\{ {\rm nom}^- \right\} \quad {\rm a/go}:: \; T^+ C^- \\ {\rm would}:: \; V^+ {\rm nom}^+ T^- \\ {\rm buy}:: \; D^+ D^+ V^- \\ {\rm who}:: \; D^- \left\{ {\rm nom}^-, {\rm wh}^- \right\} \quad {\rm it}:: \; D^- \end{array}$$

}

Wh-agreement via tier conduits (positive & negative)

$$\begin{array}{c} a:: T^+wh^+C^- \\ was:: V^+nom^+T^- \\ told:: C^+D^+V^- \\ \hline \\ she:: D^- \{nom^-\} \quad a/go::: T^+C^- \\ would:: V^+nom^+T^- \\ buy:: D^+D^+V^- \\ who:: D^- \{nom^-, wh^-\} \quad it:: D^- \end{array}$$

$$\begin{array}{c} a:: T^+wh^+C^-\\ was:: V^+nom^+T^-\\ told:: C^+D^+V^-\\ she:: D^- \{nom^-\} \quad a/go:: T^+C^-\\ would:: V^+nom^+T^-\\ who:: D^- \{nom^-, wh^-\} \quad it:: D^-\\ \end{array}$$

$$\begin{array}{c} a:: T^+wh^+C^-\\ was:: V^+nom^+T^-\\ told:: C^+D^+V^-\\ \vdots\\ she:: D^-\{nom^-\} \quad a/go::: T^+C^-\\ would:: V^+nom^+T^-\\ who:: D^-\{nom^-,wh^-\} \quad a:: T^+wh^+C^-\\ \vdots\\ who:: D^-\{nom^-,wh^-\} \quad who:: D^-\{nom^-,wh^-\} \\ \vdots\\ \vdots\\ buy:: D^+D^+V^-\\ who:: D^-\{nom^-,wh^-\} \quad it:: D^-\end{array}$$

$$\begin{array}{c} a:: T^+wh^+C^-\\ was:: V^+nom^+T^-\\ told:: C^+D^+V^-\\ \hline\\ she:: D^-\{nom^-\} \quad a/go:: T^+C^-\\ would:: V^+nom^+T^-\\ \hline\\ buy:: D^+D^+V^-\\ \hline\\ who:: D^-\{nom^-,wh^-\} \quad it:: D^-\\ \end{array}$$

Extraction morphology: An example from Wolof u-chains

Extraction morphology

morphology conditioned by the presence of movement

- Wolof u-chains (Niger-Congo)
 - (covert) wh-phrase moves to matrix Spec,CP
 - highest C-head u along the movement path must agree with wh-phrase in Class

intermediate C-heads may agree with wh-phrase in Class

 (4) [ε k-u Kumba wax [ne k/l-u Isaa defe [Q CL-u Kumba say FRC CL/EXPL-u Isaa think ne k/l-u Maryam dóór t]]] FRC CL/EXPL-u Maryam hit
 'Who did Kumba say that Isaa thought that Maryam hit?'

(Torrence 2012:1171)

Why care about extraction morphology?

Highly relevant

poster child for successive cyclic movement

Good case study

data is robust, varied, typologically diverse

A typology of extraction morphology

- 1 What is agreeing?
 - T Target of movement (Wolof u-chains)
 - O some Other head in the clause of the landing site (Duala *no*-marking on T)

2 What clauses display agreement?

- F the clause of the Final landing site (Chamorro C-agreement)
- N clauses with Non-final landing sites (Kiitharaka focus marking on verb)
- 3 agreement is...
 - X mandatory for X
 - (X) optional for X

based on Georgi (2017), a terrific paper

Example

Wolof u-chains are TF(N).

Extraction morphology and tiers

- Tiers work well for extraction morphology.
- The various options fall out nicely for T-patterns.

Central idea

- treat it as a distribution problem (not mapping/spell-out)
- use tiers to ensure correct distribution of agreeing forms

Two simplifications due to data gaps

- exactly one A'-mover per sentence
- only one type of A'-movement per sentence (no which car that John bought did we trash)

Toy example 1: TF English *whathat*

Suppose English had a special C-head whathat, which has to be the final landing site of some wh-mover.

Analysis: Lexical accident

The lexicon happens to be such that

- whathat must carry wh⁺,
- that must not carry wh⁺,

empty C must not carry wh⁺.

Toy example 2: TF English *whathat/whothat*

Suppose English also had whothat, and targeted C must agree in animacy with the wh-mover.

Lexical accident + tier match

- wh⁺ only on whathat and whothat
- on wh-tier, wh⁺-head must match animacy of wh⁻-daughter wh-tier: Xthat :: wh⁺ X :: wh⁻

Toy example 2: TF English *whathat/whothat*

Suppose English also had whothat, and targeted C must agree in animacy with the wh-mover.

Lexical accident + tier match

- wh⁺ only on whathat and whothat
- on wh-tier, wh⁺-head must match animacy of wh⁻-daughter wh-tier: Xthat :: wh⁺ X :: wh⁻

wh-tier

```
whathat :: wh<sup>+</sup>
what :: wh<sup>-</sup>
```

Toy example 3: TFN English *whathat/whothat*

Suppose every C-head along a wh-movement path has to be whathat/whothat

Lexical accident + EM-tier

- wh⁺ only on whathat and whothat
- EM-tier
 - project all wh⁺, all wh⁻, and all C-heads
 - every Xthat must have daughter with Xthat (no wh⁺) or matching wh⁻
 - non-agreeing C above Xthat: Xthat must carry wh⁺

EM-tier: Xthat :: wh⁺ Xthat^{*} X :: wh⁻

Toy example 3: TFN English *whathat/whothat*

Suppose every C-head along a wh-movement path has to be whathat/whothat

Lexical accident + EM-tier

- wh⁺ only on whathat and whothat
- EM-tier
 - project all wh⁺, all wh⁻, and all C-heads
 - every Xthat must have daughter with Xthat (no wh⁺) or matching wh⁻
 - non-agreeing C above Xthat: Xthat must carry wh⁺

```
EM-tier: Xthat :: wh<sup>+</sup> Xthat<sup>*</sup>
X :: wh<sup>-</sup>
```

wh-tier

```
whathat :: wh<sup>+</sup>
what :: wh<sup>-</sup>
```

Toy example 3: TFN English *whathat/whothat*

Suppose every C-head along a wh-movement path has to be whathat/whothat

Lexical accident + EM-tier

- wh⁺ only on whathat and whothat
- EM-tier
 - project all wh⁺, all wh⁻, and all C-heads
 - every Xthat must have daughter with Xthat (no wh⁺) or matching wh⁻
 - non-agreeing C above Xthat: Xthat must carry wh⁺

```
EM-tier: Xthat :: wh<sup>+</sup> Xthat<sup>*</sup> X :: wh<sup>-</sup>
```

N-tier

```
C
whathat :: wh<sup>+</sup>
that
what :: wh<sup>-</sup>
```

Toy example 4: T(F)(N) English *whathat/whothat*

Suppose as before, except that Xthat is optional

No accident + EM-tier with Xthat only wh⁺ on Xthat or that **EM-tier** project all wh⁺, all wh⁻, and all C-heads that are Xthat every Xthat must have daughter with Xthat (no wh^+) or matching $wh^$ non-agreeing C above Xthat: Xthat must carry wh⁺ EM-tier: (X)that :: wh⁺ Xthat^{*} $X :: wh^-$

Toy example 4: T(F)(N) English *whathat/whothat*

Suppose as before, except that Xthat is optional

N-tier

No accident + EM-tier with Xthat only

- wh⁺ on Xthat or that
- EM-tier
 - project all wh⁺, all wh⁻, and all C-heads that are Xthat
 - every Xthat must have daughter with Xthat (no wh⁺) or matching wh⁻
 - non-agreeing C above Xthat: Xthat must carry wh⁺

EM-tier: (X)that :: wh^+ Xthat* X :: wh^- whathat :: wh⁺ what :: wh⁻

Summary of analytical tricks for T-patterns

F-patterns arise from lexicon

- no F: wh⁺ only on default C
- ► F: wh⁺ only on agreeing C
- ► (F): wh⁺ on either one

N-patterns captured via tiers

- construct daisy chain of agreeing mother-daughter configurations
- top of daisy chain: f⁺ (don't agree beyond the landing site)
- bottom of daisy chain: f⁻
 (don't agree below the base position)
- optionality = not projecting uninflected heads
- If we need agreement with some feature of the mover, find a suitable tier to enforce the match condition on.

A brief look at an O pattern

- Ewe (Niger-Congo) is OF(N)
- 3rd person subject pronouns é and wò alternate based on wh-movement
- é is default
- if some XP wh-moves across Spec, TP, then
 - é must become wò in the clause with the final landing site,
 - é may become wò in a clause with a non-final landing site.
- (5) [CP Meka-e_k wò/*é gblɔ [CP be wò/é-bu [CP be who-Foc he say that he-think that wò/é-fò t_k]]]?

'Who did he_i say that he_j thinks that he_m hit?'

Reanalyzing Ewe as a TF(N) pattern

- Successive-cyclic movement cannot explain Ewe alternations, but it's very natural with tiers
- Suppose Ewe has two T-heads: default T and wh-agreeing T_{wh}
- Additional constraint on nom-tier: T_{wh} :: nom⁺ must not have é :: nom⁻ as a daughter
- Distribution of T_{wh} almost the same as Xthat in toy example 4 EM-tier: C :: wh⁺ T^{*}_{wh} X :: wh⁻
- ▶ We need a second tier to enforce the F pattern:
 - 1 Project all wh⁺, wh⁻, and all T heads
 - **2** wh^+ must not have default T as daughter

F-tier: C :: wh⁺ T_{wh} {T, T_{wh} }* X :: wh⁻

Another case: **no**-marking in Duala

Duala (Niger-Congo) is OF

- A'-movement of object or adjunct triggers insertion of **no** after finite verb in T
- same analysis as Ewe, except that:

▶ the mover must not carry nom⁻, and
 ▶ we do not allow T_{wh} as a daughter of T_{wh}
 EM-tier: C :: wh⁺ T_{wh} X :: wh⁻
 F-tier: C :: wh⁺ T_{wh} T^{*} X :: wh⁻

An extraction morphology surprise: floating quantifiers!

- (6) These kids may (all) have (all) been (all) believed to (all) *t* like candy.
- Languages vary greatly in
 - what quantifiers may float
 - what movements license quantifier float
 - in what positions quantifiers may float
 - whether floating quantifiers exhibit agreement
- Tiers capture all that variation!

Sketch of analysis

- \blacktriangleright Lexicon contains $\mathsf{QX}_{\mathrm{f}}::\mathsf{P}^+\mathsf{P}^-$ for every
 - floating quantifier Q with agreement X
 - movement type f that licenses quantifier float of Q
 - position P where Q may float
- Distribution of floating quantifiers regulated via EM-tier EM-tier: f⁺ QX_f X :: f⁻

An extraction morphology surprise: floating quantifiers!

- (6) These kids may (all) have (all) been (all) believed to (all) *t* like candy.
- Languages vary greatly in
 - what quantifiers may float
 - what movements license quantifier float
 - in what positions quantifiers may float
 - whether floating quantifiers exhibit agreement
- Tiers capture all that variation!

Sketch of analysis

- Lexicon contains QX_f :: P⁺P⁻ for every
 - floating quantifier Q with agreement X
 - movement type f that licenses quantifier float of Q
 - position P where Q may float
- Distribution of floating quantifiers regulated via EM-tier EM-tier: f⁺ QX_f X :: f⁻

Acknowledgments

This work is supported by the National Science Foundation under Grant No. BCS-1845344.

References I

- Georgi, Doreen. 2017. Patterns of movement reflexes as the result of the order of merge and agree. *Linguistic Inquiry* 48:585–626.
- Keine, Stefan. 2016. *Probes and their horizons*. Doctoral Dissertation, University of Massachusetts, Amherst.
- Keine, Stefan. 2019. Selective opacity. Linguistic Inquiry 50:13-62.
- Mayer, Connor. 2021. Capturing gradience in long-distance phonology using probabilistic tier-based strictly local grammars. In *Proceedings of the Society for Computation in Linguistics (SCiL) 2021*, 39–50.
- McCloskey, James. 2001. The morphosyntax of wh-extraction in Irish. *Journal of Linguistics* 37:67–100.
- Torrence, Harold. 2012. The morpho-syntax of silent *wh*-expressions in Wolof. *Natural Language and Linguistic Theory* 30:1147–1184.
- Torres, Charles, Kenneth Hanson, Thomas Graf, and Connor Mayer. 2023. Modeling island effects with probabilistic tier-based strictly local grammars over trees. In *Proceedings of the Society for Computation in Linguistics (SCiL) 2023*, pp-pp.