Syntactic tiers for movement and agreement

Day 3: Tree Rewriting \& Externalization

Thomas Graf

Stony Brook University mail@thomasgraf.net https://thomasgraf.net

KU Leuven Lecture Series
 December 5-7, 2023

Outline

1 Subcategorization is too powerful

2 Feature recoverability as strictly local rewriting

3 Bare phrase structure: Local transductions for Merge and Move

4 The challenge of linearization

Take-home message

- Overgeneration problem in syntax

Subcategorization can express very unnatural constraints, due to category refinement.

- A linguistically fertile solution

Category features don't come for free. They must be inferable from the local context.

Hidden power of subcategorization

Every formalism with subcategorization can express undesirable constraints. (Graf 2017)

Counting every DP contains at least five LIs
Symmetry closure every reflexive c-commands its antecedent Complement sentence well-formed jiff ill-formed in English
Boolean closure sentence must obey either V2 or Principle A, unless there are less than 7 pronounced LIs
Domain blindness a sentence is well-formed of there are at least two words that display word-final devoicing
Is(n't)lands an adjunct is an island jiff
it is inside an embedded clause or
it contains no animate nouns

Why?

- Complex constraints can be lexicalized by decomposing them into refined categories.
- They are then enforced via subcategorization.
- It's a generalized version of slash feature percolation. (Gazdar et al. 1985; Graf 2011; Kobele 2011)

An example

Subcategorization (Stabler 1997)

- Category features (F^{-})
- Selector features (F^{+})
- Subcategorization: matching features of opposite polarity

A very simple grammar

$$
\begin{array}{rr}
\text { foo }:: \mathrm{X}^{-} & \text {foo }:: \mathrm{X}^{+} \mathrm{X}^{-} \\
\text {bar }:: \mathrm{X}^{-} & \text {bar }:: \mathrm{X}^{+} \mathrm{X}^{-} \\
& \varepsilon:: \mathrm{X}^{+} \mathrm{C}^{-}
\end{array}
$$

An example

Subcategorization (Stabler 1997)

- Category features (F^{-})
- Selector features (F^{+})
- Subcategorization: matching features of opposite polarity

A very simple grammar

$$
\begin{array}{rr}
\text { foo }:: \mathrm{X}^{-} \quad \text { foo }:: \mathrm{X}^{+} \mathrm{X}^{-} \\
\text {bar }:: \mathrm{X}^{-} \quad \text { bar }:: \mathrm{X}^{+} \mathrm{X}^{-} \\
& \varepsilon:: \mathrm{X}^{+} \mathrm{C}^{-} \quad \text { foo }:: \mathrm{X}^{-}
\end{array}
$$

An example

Subcategorization (Stabler 1997)

- Category features (F^{-})
- Selector features (F^{+})
- Subcategorization: matching features of opposite polarity

A very simple grammar

$$
\begin{array}{rrr}
\text { foo }:: \mathrm{X}^{-} & \text {foo }:: \mathrm{X}^{+} \mathrm{X}^{-} & \text {bar }:: \mathrm{X}^{+} \mathrm{X}^{-} \\
\text {bar }:: \mathrm{X}^{-} & \text {bar }:: \mathrm{X}^{+} \mathrm{X}^{-} & \text {। } \\
& \varepsilon:: \mathrm{X}^{+} \mathrm{C}^{-} & \text {foo }:: \mathrm{X}^{-}
\end{array}
$$

An example

Subcategorization (Stabler 1997)

- Category features (F^{-})
- Selector features (F^{+})
- Subcategorization: matching features of opposite polarity

A very simple grammar

$$
\begin{array}{ccc}
& \varepsilon:: \mathrm{X}^{+} \mathrm{C}^{-} \\
\text {foo :: } \mathrm{X}^{-} & \text {foo }:: \mathrm{X}^{+} \mathrm{X}^{-} & \text {bar }:: \\
\text { bar }:: \mathrm{X}^{+} \mathrm{X}^{-} \\
& \text {bar :: } \mathrm{X}^{+} \mathrm{X}^{-} & \quad 1 \\
& \varepsilon:: \mathrm{X}^{+} \mathrm{C}^{-} & \text {foo :: } \mathrm{X}^{-}
\end{array}
$$

An example

Subcategorization (Stabler 1997)

- Category features (F^{-})
- Selector features (F^{+})
- Subcategorization: matching features of opposite polarity

A very simple grammar

$$
\begin{array}{rrr}
& \varepsilon:: \mathrm{X}^{+} \mathrm{C}^{-} \\
\text {foo }:: \mathrm{X}^{-} & \text {foo }:: \mathrm{X}^{+} \mathrm{X}^{-} & \text {bar :: } \mathrm{X}^{+} \mathrm{X}^{-} \\
\text {bar :: } \mathrm{X}^{-} & \text {bar :: } \mathrm{X}^{+} \mathrm{X}^{-} & \\
& \varepsilon:: \mathrm{X}^{+} \mathrm{C}^{-} & \text {foo :: } \mathrm{X}^{-} \\
& & \\
& &
\end{array}
$$

An example

Subcategorization (Stabler 1997)

- Category features (F^{-})
- Selector features (F^{+})
- Subcategorization: matching features of opposite polarity

A very simple grammar

$$
\begin{array}{rrrr}
& \varepsilon:: \mathrm{X}^{+} \mathrm{C}^{-} \\
\text {foo }:: \mathrm{X}^{-} & \text {foo }:: \mathrm{X}^{+} \mathrm{X}^{-} & \text {bar }:: \mathrm{X}^{+} \mathrm{X}^{-} & \\
\text {bar }:: \mathrm{X}^{-} \text {bar }:: \mathrm{X}^{+} \mathrm{X}^{-} & \text {। } & \\
& \varepsilon:: \mathrm{X}^{+} \mathrm{C}^{-} & \text {foo }:: \mathrm{X}^{-} & \text {bar }:: \mathrm{X}^{+} \mathrm{X}^{-} \\
& & & \text {। } \\
& & & \text { foo }:: \mathrm{X}^{-}
\end{array}
$$

An example

Subcategorization (Stabler 1997)

- Category features (F^{-})
- Selector features $\left(\mathrm{F}^{+}\right)$
- Subcategorization: matching features of opposite polarity

A very simple grammar

$$
\begin{array}{rrrr}
& \varepsilon:: \mathrm{X}^{+} \mathrm{C}^{-} \\
\text {foo }:: \mathrm{X}^{-} & \text {foo }:: \mathrm{X}^{+} \mathrm{X}^{-} & \text {bar }:: \mathrm{X}^{+} \mathrm{X}^{-} & \text {bar }:: \mathrm{X}^{+} \mathrm{X}^{-} \\
\text {bar }:: \mathrm{X}^{-} & \text {bar }:: \mathrm{X}^{+} \mathrm{X}^{-} & \text {। } & \text { । } \\
& \varepsilon:: \mathrm{X}^{+} \mathrm{C}^{-} & \text {foo }:: \mathrm{X}^{-} & \text {bar :: } \mathrm{X}^{+} \mathrm{X}^{-} \\
& & & \text {। } \\
& & & \text { foo }:: \mathrm{X}^{-}
\end{array}
$$

An example

Subcategorization (Stabler 1997)

- Category features (F^{-})
- Selector features (F^{+})
- Subcategorization: matching features of opposite polarity

A very simple grammar

$$
\begin{array}{rrrr}
& \varepsilon:: \mathrm{X}^{+} \mathrm{C}^{-} & \varepsilon:: \mathrm{X}^{+} \mathrm{C}^{-} \\
\text {foo }:: \mathrm{X}^{-} & \text {foo }:: \mathrm{X}^{+} \mathrm{X}^{-} & \text {bar }:: \mathrm{X}^{+} \mathrm{X}^{-} & \text {bar :: } \mathrm{X}^{+} \mathrm{X}^{-} \\
\text {bar }:: \mathrm{X}^{-} & \text {bar }:: \mathrm{X}^{+} \mathrm{X}^{-} & \text {। } & \text { । } \\
& \varepsilon:: \mathrm{X}^{+} \mathrm{C}^{-} & \text {foo }:: \mathrm{X}^{-} & \text {bar :: } \mathrm{X}^{+} \mathrm{X}^{-} \\
& & & \text {foo :: } \mathrm{X}^{-}
\end{array}
$$

Adding modulo counting

- Suppose every tree must have an even number of nodes
- Refinement: $\mathrm{X}^{-} \Rightarrow \mathrm{O}^{-}$and E^{-}for Odd and Even

Refined grammar with even/odd distinction

$$
\begin{array}{rr}
\text { foo }:: \mathrm{O}^{-} & \text {foo }:: \mathrm{E}^{+} \mathrm{O}^{-} \\
& \text {foo }:: \mathrm{O}^{+} \mathrm{E}^{-} \\
\text {bar }:: \mathrm{O}^{-} & \text {bar }:: \mathrm{E}^{+} \mathrm{O}^{-} \\
& \text {bar }:: \mathrm{O}^{+} \mathrm{E}^{-} \\
& \varepsilon:: \mathrm{O}^{+} \mathrm{C}^{-}
\end{array}
$$

Adding modulo counting

- Suppose every tree must have an even number of nodes
- Refinement: $\mathrm{X}^{-} \Rightarrow \mathrm{O}^{-}$and E^{-}for Odd and Even

Refined grammar with even/odd distinction

$$
\begin{aligned}
& \text { foo :: } 0^{-} \text {foo :: } \mathrm{E}^{+} \mathrm{O}^{-} \\
& \text {foo :: } 0^{+} \mathrm{E}^{-} \\
& \text {bar :: } \mathrm{O}^{-} \text {bar :: } \mathrm{E}^{+} \mathrm{O}^{-} \\
& \text {bar :: } \mathrm{O}^{+} \mathrm{E}^{-} \text {foo :: } \mathrm{O}^{-} \\
& \varepsilon:: 0^{+} \mathrm{C}^{-}
\end{aligned}
$$

Adding modulo counting

- Suppose every tree must have an even number of nodes
- Refinement: $\mathrm{X}^{-} \Rightarrow \mathrm{O}^{-}$and E^{-}for Odd and Even

Refined grammar with even/odd distinction

$$
\begin{array}{rrrr}
\text { foo }:: \mathrm{O}^{-} & \text {foo :: } \mathrm{E}^{+} \mathrm{O}^{-} & \\
& \text {foo }:: \mathrm{O}^{+} \mathrm{E}^{-} & \text {bar :: } 0^{+} \mathrm{E}^{-} \\
\text {bar :: } \mathrm{O}^{-} & \text {bar :: } & \mathrm{E}^{+} \mathrm{O}^{-} & \text {। } \\
& \text { bar }:: & \mathrm{O}^{+} \mathrm{E}^{-} & \text {foo }:: 0^{-} \\
& \varepsilon:: & \mathrm{O}^{+} \mathrm{C}^{-} &
\end{array}
$$

Adding modulo counting

- Suppose every tree must have an even number of nodes
- Refinement: $\mathrm{X}^{-} \Rightarrow \mathrm{O}^{-}$and E^{-}for Odd and Even

Refined grammar with even/odd distinction

$$
\begin{array}{rcc}
\text { foo }:: \mathrm{O}^{-} & \text {foo }:: \mathrm{E}^{+} \mathrm{O}^{-} & \varepsilon:: \mathrm{O}^{+} \mathrm{C}^{-} \\
& \text {foo }:: \mathrm{O}^{+} \mathrm{E}^{-} & \text {bar }:: \mathrm{O}^{+} \mathrm{E}^{-} \\
\text {bar }:: \mathrm{O}^{-} & \text {bar }:: \mathrm{E}^{+} \mathrm{O}^{-} & \text {। } \\
& \text { bar }:: \mathrm{O}^{+} \mathrm{E}^{-} & \text {foo }:: \mathrm{O}^{-} \\
& \varepsilon: & \mathrm{O}^{+} \mathrm{C}^{-}
\end{array}
$$

Adding modulo counting

- Suppose every tree must have an even number of nodes
- Refinement: $\mathrm{X}^{-} \Rightarrow \mathrm{O}^{-}$and E^{-}for Odd and Even

Refined grammar with even/odd distinction

$$
\begin{array}{rcc}
\text { foo }:: \mathrm{O}^{-} & \text {foo }:: \mathrm{E}^{+} \mathrm{O}^{-} & \varepsilon:: \mathrm{O}^{+} \mathrm{C}^{-} \\
& \text {foo }:: \mathrm{O}^{+} \mathrm{E}^{-} & \text {bar }:: \mathrm{O}^{+} \mathrm{E}^{-} \\
\text {bar }:: \mathrm{O}^{-} & \text {bar }:: \mathrm{E}^{+} \mathrm{O}^{-} & \text {। } \\
& \text { bar }:: \mathrm{O}^{+} \mathrm{E}^{-} & \text {foo }:: \mathrm{O}^{-} \\
& \varepsilon:: \mathrm{O}^{+} \mathrm{C}^{-} &
\end{array}
$$

Adding modulo counting

- Suppose every tree must have an even number of nodes
- Refinement: $\mathrm{X}^{-} \Rightarrow \mathrm{O}^{-}$and E^{-}for Odd and Even

Refined grammar with even/odd distinction

$$
\begin{array}{rcccc}
\text { foo }:: \mathrm{O}^{-} & \text {foo }:: \mathrm{E}^{+} \mathrm{O}^{-} & \varepsilon:: \mathrm{O}^{+} \mathrm{C}^{-} & \\
& \text {foo }:: \mathrm{O}^{+} \mathrm{E}^{-} & \text {bar }:: \mathrm{O}^{+} \mathrm{E}^{-} & \\
\text {bar }:: \mathrm{O}^{-} & \text {bar }:: \mathrm{E}^{+} \mathrm{O}^{-} & \text {। } & \\
& \text { bar }:: \mathrm{O}^{+} \mathrm{E}^{-} & \text {foo }:: \mathrm{O}^{-} & \text {bar }:: \mathrm{O}^{+} \mathrm{E}^{-} \\
& \varepsilon:: \mathrm{O}^{+} \mathrm{C}^{-} & & \text {foo }:: \mathrm{O}^{-}
\end{array}
$$

Adding modulo counting

- Suppose every tree must have an even number of nodes
- Refinement: $\mathrm{X}^{-} \Rightarrow \mathrm{O}^{-}$and E^{-}for Odd and Even

Refined grammar with even/odd distinction

$$
\begin{array}{rcccc}
\text { foo }:: \mathrm{O}^{-} & \text {foo }:: \mathrm{E}^{+} \mathrm{O}^{-} & \varepsilon:: \mathrm{O}^{+} \mathrm{C}^{-} & \\
& \text {foo }:: \mathrm{O}^{+} \mathrm{E}^{-} & \text {bar }:: \mathrm{O}^{+} \mathrm{E}^{-} & \text {bar }:: \mathrm{E}^{+} \mathrm{O}^{-} \\
\text {bar }:: \mathrm{O}^{-} & \text {bar }:: \mathrm{E}^{+} \mathrm{O}^{-} & \text {। } & \text { foo }:: \mathrm{O}^{-} & \text {bar }:: \mathrm{O}^{+} \mathrm{E}^{-} \\
& \text {bar }:: \mathrm{O}^{+} \mathrm{E}^{-} & & \text {foo }:: \mathrm{O}^{-}
\end{array}
$$

Adding modulo counting

- Suppose every tree must have an even number of nodes
- Refinement: $\mathrm{X}^{-} \Rightarrow \mathrm{O}^{-}$and E^{-}for Odd and Even

Refined grammar with even/odd distinction

$$
\begin{array}{rrr}
\text { foo }:: \mathrm{O}^{-} & \text {foo }:: \mathrm{E}^{+} \mathrm{O}^{-} \\
& \text {foo }:: \mathrm{O}^{+} \mathrm{E}^{-} \\
\text {bar }:: \mathrm{O}^{-} & \text {bar }:: \mathrm{E}^{+} \mathrm{O}^{-} \\
& \text {bar }:: \mathrm{O}^{+} \mathrm{E}^{-} \\
& \varepsilon:: \mathrm{O}^{+} \mathrm{C}^{-}
\end{array}
$$

The problem with subcategorization

- Even very complex constraints can be

1 compiled into the category system and
2 enforced via subcategorization.

- works for all MSO constraints \Rightarrow massive overgeneration (Graf 2011; Kobele 2011)
- Linguistic criteria for determining categories are too weak to prevent this.
- morphology
- syntactic distribution
- semantics

The central issue

We need a more restrictive notion of category!

A formal notion of complexity

- We need to restrict the power of subcategorization, but how?
- Features currently come for free.
- We must measure the cost of features.

A formal notion of complexity

- We need to restrict the power of subcategorization, but how?
- Features currently come for free.
- We must measure the cost of features.

A formal notion of complexity

- We need to restrict the power of subcategorization, but how?
- Features currently come for free.
- We must measure the cost of features.

A formal notion of complexity

- We need to restrict the power of subcategorization, but how?
- Features currently come for free.
- We must measure the cost of features.

A formal notion of complexity

- We need to restrict the power of subcategorization, but how?
- Features currently come for free.
- We must measure the cost of features.
water :: $\mathrm{D}^{+} \mathrm{D}^{+} \mathrm{V}^{-} \longleftarrow$ feature assignment water

Local feature recoverability
Features must be recoverable in an ISL fashion.

Input strictly k-local relabelings

ISL string-to-string transduction (Chandlee 2014)

Rewrite each symbol in a string based on its local input context.

An ISL-3 relabeling

b b a
a c a e

- ISL is a very weak class, yet widely found in phonology and morphology.

Input strictly k-local relabelings

ISL string-to-string transduction (Chandlee 2014)

Rewrite each symbol in a string based on its local input context.

An ISL-3 relabeling

b b
a
a c a e

$$
a \quad b \quad b \quad c \quad a
$$

- ISL is a very weak class, yet widely found in phonology and morphology.

Input strictly k-local relabelings

ISL string-to-string transduction (Chandlee 2014)

Rewrite each symbol in a string based on its local input context.

An ISL-3 relabeling

\square

- ISL is a very weak class, yet widely found in phonology and morphology.

Input strictly k-local relabelings

ISL string-to-string transduction (Chandlee 2014)

Rewrite each symbol in a string based on its local input context.

An ISL-3 relabeling

$a \quad b \quad b \quad a \quad a$
b b
a c a e

- ISL is a very weak class, yet widely found in phonology and morphology.

Input strictly k-local relabelings

ISL string-to-string transduction (Chandlee 2014)

Rewrite each symbol in a string based on its local input context.

An ISL-3 relabeling

$$
a \quad b \quad b \quad a \quad a
$$

b b a
a c a e

- ISL is a very weak class, yet widely found in phonology and morphology.

Input strictly k-local relabelings

ISL string-to-string transduction (Chandlee 2014)

Rewrite each symbol in a string based on its local input context.

An ISL-3 relabeling

$$
a \quad b \quad b \quad a \quad a
$$

$$
b \quad b \quad a \quad b
$$

$$
a \quad c \quad a \quad e
$$

- ISL is a very weak class, yet widely found in phonology and morphology.

Input strictly k-local relabelings

ISL string-to-string transduction (Chandlee 2014)

Rewrite each symbol in a string based on its local input context.

An ISL-3 relabeling

$$
a \quad b \quad b \quad a \quad a
$$

b b a b e
a c a e

- ISL is a very weak class, yet widely found in phonology and morphology.

Input strictly k-local relabelings

ISL string-to-string transduction (Chandlee 2014)

Rewrite each symbol in a string based on its local input context.

An ISL-3 relabeling

$$
\begin{array}{llllll}
a & b & b & a & c & a \\
b & b & a & b & e & b
\end{array}
$$

$$
a \quad c \quad a \quad e
$$

- ISL is a very weak class, yet widely found in phonology and morphology.

Lifting ISL relabelings to trees

String contexts as tree contexts

a cae

Lifting ISL relabelings to trees

String contexts as tree contexts

a c a e
$a-c=a$
e

Lifting ISL relabelings to trees

String contexts as tree contexts

Lifting ISL relabelings to trees

String contexts as tree contexts

a C a e
$a-c-a$ e

Reminder: ISL for feature inference

- Feature cost \approx how hard to assign by transduction?

$$
\text { water }:: \mathrm{D}^{+} \mathrm{D}^{+} \mathrm{V}^{-} \longleftarrow \text { feature assignment } \text { water }
$$

Local feature recoverability
Features must be recoverable in an ISL fashion.

Reminder: ISL for feature inference

- Feature cost \approx how hard to assign by transduction?

$$
\text { water :: } \mathrm{D}^{+} \mathrm{D}^{+} \mathrm{V}^{-}
$$

Local feature recoverability

Features must be recoverable in an ISL fashion.

Intuition

Categorial ambiguity can be resolved within local context

Modulo counting is not ISL recoverable

Modulo counting is not ISL recoverable

- Can you determine the features of foo?
$10^{+} E^{-}$
$2 \mathrm{E}^{+} \mathrm{O}^{-}$
- No, that's impossible.
- You need more than local information.
- Modulo counting is not ISL recoverable.
bar

An empirical conjecture

SL-2 recoverability conjecture

The category and selector features of lexical items are

- recoverable from feature-less dependency trees
- using only a window of size 2 .

gardeners flowers

Implications and open issues

Implications

- We avoid tons of overgeneration.
- Heads only select for arguments, not arguments of arguments.

Open issues

- Needs to be tested across many languages
- Depends on theoretical assumptions
- distribution of empty heads
- lexical items fully inflected or bare roots? (Hale and Keyser 1993; Marantz 1997)
- SL-2 may be too tight, but SL- k recoverability seems safe
- Move features are not ISL recoverable!

An incomplete picture

Movement isn't just a syntactic dependency, it affects the output.

An incomplete picture

Movement isn't just a syntactic dependency, it affects the output.

Phrase structure trees without movement

no movement \Rightarrow easy translation to phrase structure trees

Phrase structure trees without movement

no movement \Rightarrow easy translation to phrase structure trees

Phrase structure trees without movement

no movement \Rightarrow easy translation to phrase structure trees

Phrase structure trees without movement

no movement \Rightarrow easy translation to phrase structure trees

Phrase structure trees without movement

no movement \Rightarrow easy translation to phrase structure trees

Phrase structure trees without movement

no movement \Rightarrow easy translation to phrase structure trees

Phrase structure trees without movement

no movement \Rightarrow easy translation to phrase structure trees

Adding tier relations

- ISL limited to local contexts \Leftrightarrow unbounded movement
- But: movement is local over tiers
- suffices to enrich ISL rewrite rules with tier-daughter relation

ISL rewrite rule with nom-daughter relation

Example with subject movement

Multiple copies are straightforward

Linearization/traces: tricky

- Copies don't tell us how to pronounce the tree.
- Traces: unpronounced landing sites of movers

Base delinking example

what

Lexical predictability

- Given two landing sites x and y on different tiers, one cannot tell from the tiers whether x or y is higher.
- We cannot distinguish final from non-final landing sites.

Lexical predictability requirement of delinking
Delinking works only if one knows whether to
1 insert a copy, or
2 insert a trace.
Due to the limitations of tiers, this must be inferable directly from the mover.

Empirical support

- Lexical predictability holds for nom and wh movement.

Ban on Improper Movement (BolM)

If a mover undergoes both nom and wh movement, nom movement derivationally precedes wh movement.

might

Empirical support

- Lexical predictability holds for nom and wh movement.

Ban on Improper Movement (BoIM)

If a mover undergoes both nom and wh movement, nom movement derivationally precedes wh movement.

\rightarrow

Output-oriented Ban on Improper Movement

- BolM is a particular instance of a more general requirement.

Output-oriented Ban on Improper Movement (OOBoIM)

- Let I be an arbitrary lexical item with $\left\{\mathrm{f}^{-}, \mathrm{g}_{0}^{-}, \ldots, \mathrm{g}_{n}^{-}\right\}$.
- If I's final movement step is f-movement in some derivation, then I's final movement step is f-movement in all derivations.
- Kenneth Hanson's analysis of MG corpus supports even stronger version: if $f \prec g$ for I in some derivation, then $\mathrm{f} \prec \mathrm{g}$ for I in all derivations.
- OOBoIM permits BolM violations hyperraising

Kenneth Hanson

Conclusion

- Movement is both a syntactic dependency and an operation.
- In both cases the core of movement is local over tiers.
- Identifying mover with all landing sites (copies/multidominance) easier than identifying output-relevant landing sites (traces)

Outlook: Bringing it all together

- TSL perspectives of all movement types covert, successive-cyclic, sidewards, multiple wh
- Tiers for islands, extraction morphology and path conditions Wolof u-chains, floating quantifiers, Germanic wh-copying
- Learning

SL learning of Merge features, ??? for Move features

Acknowledgments

This work is supported by the National Science Foundation under Grant No. BCS-1845344.

References I

Chandlee, Jane. 2014. Strictly local phonological processes. Doctoral Dissertation, University of Delaware. URL http://udspace.udel.edu/handle/19716/13374.
Gazdar, Gerald, Ewan Klein, Geoffrey K. Pullum, and Ivan A. Sag. 1985. Generalized phrase structure grammar. Oxford: Blackwell.
Graf, Thomas. 2011. Closure properties of Minimalist derivation tree languages. In LACL 2011, ed. Sylvain Pogodalla and Jean-Philippe Prost, volume 6736 of Lecture Notes in Artificial Intelligence, 96-111. Heidelberg: Springer. URL https://dx.doi.org/10.1007/978-3-642-22221-4_7.
Graf, Thomas. 2017. A computational guide to the dichotomy of features and constraints. Glossa 2:1-36. URL https://dx.doi.org/10.5334/gjgl. 212.
Hale, Kenneth, and Samuel J. Keyser. 1993. On argument structure and the lexical expression of syntactic relations. In The view from building 20: Essays in honor of sylvain bromberger, ed. Kenneth Hale and Samuel J. Keyser. Cambridge, MA: MIT Press.

Kobele, Gregory M. 2011. Minimalist tree languages are closed under intersection with recognizable tree languages. In LACL 2011, ed. Sylvain Pogodalla and Jean-Philippe Prost, volume 6736 of Lecture Notes in Artificial Intelligence, 129-144. URL https://doi.org/10.1007/978-3-642-22221-4_9.
Marantz, Alec. 1997. No escape from syntax: Don't try morphological analysis in the privacy of your own lexicon. Penn Working Papers in Linguistics 4:201-225.

References II

Stabler, Edward P. 1997. Derivational Minimalism. In Logical aspects of computational linguistics, ed. Christian Retoré, volume 1328 of Lecture Notes in Computer Science, 68-95. Berlin: Springer. URL https://doi.org/10.1007/BFb0052152.

