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Logic of colours               Logica der kleuren 
The mereological algebra of coloursThe mereological algebra of coloursThe mereological algebra of coloursThe mereological algebra of colours    

 
Dany Jaspers (CRISSP, HUBrussel, dany.jaspers@hubrussel.be) 

    

0. Introduction0. Introduction0. Introduction0. Introduction    

(1) structure:  

(1) definitions of oppositions in predicate logic, using a Smessaert-type bitstring-

analysis with a string consisting of three values per quantifier. 

(2) a mereological algebra of colours as an idealized binary basis for colour 

cognition. 

(3) conclusion: isomorphism of the predicate logic and colour algebras 

 

 
Square of Oppositions (Boethius, 5th century)   Höfler (1897) 

 

(4) Natural language application: parallels between the two linguistic domains of 

application of the respective algebras: 

- Evolution sequence of terms for quantifier and colour oppositions  

- natural versus non-natural quantifiers (*nand/*nall) and colour terms 

(yellow vs. “cyane”): cognitive complexity and the generalized O-corner 

problem. 

    

1.1.1.1. Predicate LogicPredicate LogicPredicate LogicPredicate Logic    (based on Smessaert 2009)(based on Smessaert 2009)(based on Smessaert 2009)(based on Smessaert 2009)    

    

(1)    

U = {a,b,c,d,e,f,g,h}  

D = {a,b,c,d} [[book]]  

P1 = {e,f} [[be asleep]] 

P2 = {c,d,g,h} [[be in English]] 

P3 = {a,b,c,d,g,h} [[be worth reading]] 

(Smessaert 2009: 304) 

 

(2)  



 MIT LING LUNCH APRIL 8 2010 

 2

[ ]D: 

[x1 . . . xn]D ≡ {X ⊆ U : X ∩D = {x1, . . . , xn}}     

[a]D ≡ {X ⊆ U : X ∩D = {a}} [[the book a]] 

[abc]D ≡ {X ⊆ U : X ∩D = {a,b,c}} [[the books a, b and c]] 

[ ]D ≡ {X ⊆ U : X ∩D = ∅} [[neither a nor b nor c nor d]]  

 

P1 ∈ [ ]D [[neither book a nor b nor c nor d is asleep]] 

P2 ∈ [cd]D [[the books c and d are in English]] 

P3 ∈ [abcd]D [[the books a, b, c and d are worth reading]]” 

 

 

 

(3) 

Dn ≡ {X ⊆ U :| X ∩ D |= n}        

D0 ≡ [ ]D 

D3 ≡ [abc]D ∪ [abd]D ∪ [acd]D ∪ [bcd]D     

 

(4) Scalar structure (partition of the Powerset of the Universe) 

D0  D1  D2  D3  D4 

[ ]  [a]  [ab]  [abc]  [abcd] 

[b]  [ac]  [abd] 

[c]  [ad]  [acd] 

[d]  [bc]  [bcd] 

[bd] 

[cd]       

 

(5) 

D0   D1   D2   D3   D4 

---------α -------   β   —- ---— γ ------- 

Dmin   Dn−1   DDDDn   Dn+1   Dmax 

[ab] 

[a]   [ac]   [abc] 

[b]   [ad]   [abd] 

[ ]   [c]   [bc]   [acd]   [abcd] 

[d]   [bd]   [bcd] 

[cd] 

DDDDmin   Dmin+1  Dn   Dmax−1  DDDDmax 

 µ  -------------λ ———————----- Κ 
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(6) at the bottom of (5): 

κ ≡ Dmax = {X ⊆ U :| X ∩ D |=| D |} 

= {X ⊆ U : D ⊆ X}  

= {X ⊆ U : X ∩D = ∅} (23a)  

λ ≡ Dmin+1 ∪ … ∪ Dmax−1 = {X ⊆ U : 0 <| X ∩ D |<| D |} (23b) 

µ ≡ Dmin  = {X ⊆ U :| X ∩ D |= 0} 

 

“The bottom end µ denotes the set of all sets which do not intersect with the 

domain of quantification D, whereas the top end κ refers to the set of all sets 

which completely include the domain set D.” 

 

(7) Smessaert uses a shorthand notation format in the shape of a string of three bit 

positions. A value 1 for a particular area means that it is part of the quantifier 

denotation, whereas a value 0 indicates that it is not. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hasse-diagram (Predicate Logic): 8 vertices 

    

 

 

 

 

 

 

  

  

  

    

    

  

110 101 011 

001 010 100 

000 

111 all or some or no 

not all all or no sm: all or some 

some (but not all) 

neither all nor 
some nor no 

all  no  

level 2 

level 1 
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(8) 

level 1 quantifiers level 1 quantifiers level 1 quantifiers level 1 quantifiers (L1L1L1L1) κλµ 

A-corner1: [[all (books)]] ≡ 100 = κ  

Y-corner:[[some but not all (henceforth some) (books)]] ≡ 010 = λ  

E-corner: [[no (books)]] ≡ 001 = µ  

level 2 quantifiers level 2 quantifiers level 2 quantifiers level 2 quantifiers (L2L2L2L2) κλµ 

 I-corner: [[some (henceforth sm) (books)]] ≡ 110 = κ ∪ λ 

U-corner: [[no or all (books)]] ≡ 101 = κ ∪ µ 

O-corner: [[not all (books)]] ≡ 011 = λ ∪ µ 

 

(9) Any L1 quantifier has a unique L2 quantifier as its contradictory and vice versa; any 

two L1 quantifiers are one anothers contraries; and any two L2 quantifiers are one 

anothers subcontraries.  Here are the formal definitions in bitstring notation. 

    

ContradictoryContradictoryContradictoryContradictory(q1,q2) iff ([[q1]] ∩ [[q2]] = 000) and ([[q1]] ∪ [[q2]] = 111) 

CD(no, sm) (001 ∩ 110 = 000) and (001 ∪ 110 = 111) 

CD(all, not all) (100 ∩ 011 = 000) and (100 ∪ 011 = 111) 

CD(some, no or all) (010 ∩ 101 = 000) and (010 ∪ 101 = 111) 

    

ContraryContraryContraryContrary(q1,q2) iff ([[q1]] ∩ [[q2]] = 000) and ([[q1]] ∪ [[q2]] ≠ 111) 

CR(no, some) (001 ∩ 010 = 000) and (001 ∪ 010 ≠ 111) 

CR(no, all) (001 ∩ 100 = 000) and (001 ∪ 100 ≠ 111) 

CR(some, all) (010 ∩ 100 = 000) and (010 ∪ 100 ≠ 111) 

 

SubcontrarySubcontrarySubcontrarySubcontrary(q1,q2) iff ([[q1]] ∩ [[q2]] ≠ 000) and ([[q1]] ∪ [[q2]] = 111) 

SCR(not all, sm) (011 ∩ 110 ≠ 000) and (011 ∪ 110 = 111) 

SCR(not all, all or no) (011 ∩ 101 ≠ 000) and (011 ∪ 101 = 111) 

SCR(some, all or no) (110 ∩ 101 ≠ 000) and (110 ∪ 101 = 111) 

 

EntailEntailEntailEntail(q1, q2) iff ([[q1]] ∩ [[q2]] = [[q1]]) and ([[q1]] ∪ [[q2]] = [[q2]]) 

iff [[q1]] ⊆ [[q2]] (19) 

 

Entailment 

ENT(all, sm) 100 ⊆ 110 

ENT(all, no or all) 100 ⊆ 101 

ENT(some, sm) 010 ⊆ 110 

ENT(some, not all) 010 ⊆ 011 

ENT(no, not all) 001 ⊆ 011 

ENT(no, no or all) 001 ⊆ 101 

                                                 
1 The letters of the corners refer to their names in the Boethian Square of Oppositions and the Blanché 
(1969) star (cf. below). 
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(10) 

This setup can be represented by means of a bitriangular representation, a so-called 

Blanché-star (Blanché 1969), where contradictories are connected by red lines, 

contraries by blue lines and subcontraries by green lines. 
 

 
 
 
 

 
 

 

Blanché star (Predicate Logic): 6 vertices (111 and 000 missing) 

 

(11) 

Looking at matters from a linguistic viewpoint, it is to be noted that the enriched 

representation by means of a Hasse diagram has four corners for which lexicalization by 

means of a single term is nonexistent or extremely rare, namely 111, 000, 011 and 101: 

 

all 100 no 001 

sm: all or some 110 

all or no 101 

not all 011 

some 010 
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The fact that 000 and 111 do not lexicalize as a single word is because the predicates 

involved are trivial, i.e. completely non-informative and can therefore not serve for 

contingent situations (it is logically necessary that “all or some or no flags are green”).  

The other corners that do not lexicalize (with maybe a chance exception if Seuren is 

right) are both secondary operators whose intersection is the E-corner operator, which 

itself is the least often lexicalized of the level 1 corners cross-linguistically (cf. Horn 

1989).  Somehow, negative corners are less easily lexicalized or only non-naturally so 

(as in the case of the scientifically constructed O-corner item nand.

 

  

  

  

    

    

  

110 101 011 

001 010 100 

000 

111 all or some or no 

not all all or no sm: all or some 

some  

neither all nor 
some nor no 

all  no  

level 2 

level 1 
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2. The mereological algebra of colours2. The mereological algebra of colours2. The mereological algebra of colours2. The mereological algebra of colours 

 

(12) The Boolean definitions of the Aristotelian relations of Opposition straightforwardly 

carry over to the primary and secondary colours, modulo replacement of  

(a) settheoretical union by mereological sum (⊕), the individuals involved in 

the operation being wavelengths of visible light (or alternatively 

activation of the cone in the retina that is sensitive to that particular 

wavelength). Hence, the mereological sum is the combination of the 

wavelengths of visible light in question, which yields a different colour.  

For example, the mereological sum of RED and GREEN yields YELLOW, 

which is indeed a combination of the wavelengths of visible light of RED 

and GREEN.  Note the difference between such a mereological sum and 

settheoretical union: a description of the settheoretical union of RED and 

GREEN would be “RED or GREEN or the combination of RED and GREEN 

(i.e. YELLOW)”.  A mereological sum does not include the first two 

disjuncts (RED, GREEN) but only the combination, the reason being that 

mereology is interested in nontrivial part-whole relationships, and 

YELLOW is the only nontrivial holonym for the meronyms RED and 

GREEN.  

(b) settheoretical intersection by mereological product (⊗), which amounts 

to reducing the individuals involved to the wavelength(s) of visible light 

they have in common.  This is what happens when we mix colours, which 

amounts to removing or blocking the wavelengths that the colours one 

mixes do not share.  For example, when we mix YELLOW (which is the 

mereological sum of the wavelengths of RED and GREEN as we saw 

above) and MAGENTA (which is the mereological sum of RED and BLUE), 

we end up with what they share: RED; 

(c) quantifiers by mereological individuals, i.c. colours such as RED, GREEN, 

etc.; 

(d) The settheoretical null set and universe by BOTTOM and TOP 

respectively, which are individuals in their own right. In the colour 

algebra they are respectively BLACK and WHITE. Note that there is often 

controversy about the status of a BOTTOM in a mereological system. 

Thus, one might argue in our case that BLACK is qualitatively different 

from all the rest in that it is really the absence of cone activity and 

therefore only an “individual” if one reifies the absence of activation of 

any cone due to the absence of any wavelength of visible light into 

something. But we do see BLACK of course, so the idea that there is a 

BOTTOM is justified. The only problem that poses from the viewpoint of 

naturalness is that BLACK trivially a “part” of RED (and any other colour), 

parallel to the way in which the null set is a subset of any set.  
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So, let’s have a look at the resulting algebra, which turns out to be perfectly isomorphic 

to the bitstring analysis for the quantifiers of predicate logic above: 

    

(13) 

level 1 level 1 level 1 level 1 (primary) (primary) (primary) (primary) colours colours colours colours (L1L1L1L1) κλµ 

A-corner: RED ≡ 100 = κ  

Y-corner: GREEN ≡ 010 = λ  

E-corner: BLUE ≡ 001 = µ  

level 2 (secondary) colourslevel 2 (secondary) colourslevel 2 (secondary) colourslevel 2 (secondary) colours    (L2L2L2L2) κλµ 

I-corner: YELLOW ≡ 110 = κ ⊕ λ (25b) 

U-corner: MAGENTA ≡ 101 = κ ⊕ µ (25c) 

O-corner: CYANE ≡ 011 = λ ⊕ µ (25a) 

 
 

 
 

 
 

Blanché star (Colours): 6 vertices (white (111) and black (000) missing) 

 

(14) two colours have to be added:  

Level 0 (BOTTOM) colour (L0)Level 0 (BOTTOM) colour (L0)Level 0 (BOTTOM) colour (L0)Level 0 (BOTTOM) colour (L0): BLACK ≡ 000 = κ ⊗ λ ⊗ µ 

Level 3 (TOP) colour (L3)Level 3 (TOP) colour (L3)Level 3 (TOP) colour (L3)Level 3 (TOP) colour (L3): WHITE ≡ 111 = κ ⊕ λ ⊕ µ 

 

 

 

 

 

 

 

 

red 100 blue 001 

yellow 110 

magenta 101 

cyane 011 

green 010 
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(15) A Hasse-diagram can easily accommodate these two new vertices. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(16) A threedimensional version: the following colour cube developed by Hans 

Smessaert (actually, its mirror image: it has red and blue switched and hence also yellow 

and cyane, but for the cubic nature of the object that is immaterial): 

 

 
Smessaert (5/1/2010) – The colour cube 

 

 

 

  

  

  

    

    

  

110 101 011 

001 010 100 

000 

111 White 

cyane magenta yellow 

green  

black 

red  blue  

level 2 

level 1 

level 0 

level 3 
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(17) 

Any L1 colour has a unique L2 colour as its negate or complementary (which is the 

mereological counterpart of contradictory in logic) and vice versa, any two L1 colours 

are one anothers “contraries” (= nonoverlapping colours whose mereological sum is not 

the mereological TOP colour WHITE (111)), and any two L2 colours are one anothers 

“subcontraries”,i.e. mutually partially overlapping colours whose mereological sum is the 

mereological TOP colour WHITE. 

    

NegateNegateNegateNegate    (or “complementary”)(or “complementary”)(or “complementary”)(or “complementary”): : : : the negate of A, NEG(A), is that individual whose parts are 

exactly those that are discrete from A.  The negate is the mereological counterpart of 

contradictoriness in logic. In the mereological algebra of colours the negate of a colour 

is what is known as its complementary colour. 

    

NegateNegateNegateNegate/Complementary colour:/Complementary colour:/Complementary colour:/Complementary colour:    (q1,q2) iff ([[q1]] ⊗ [[q2]] = 000) and ([[q1]] ⊕ [[q2]] = 

111) 

CD(BLUE, YELLOW) (001 ⊗ 110 = 000) and (001 ⊕ 110 = 111) 

CD(RED, CYANE) (100 ⊗ 011 = 000) and (100 ⊕ 011 = 111) 

CD(GREEN, MAGENTA) (010 ⊗ 101 = 000) and (010 ⊕ 101 = 111) 

CD(BLACK, WHITE) (000 ⊗ 111 = 000) and (000 ⊕ 111 = 111) 

 

Mereological “cMereological “cMereological “cMereological “contrariesontrariesontrariesontraries”: ”: ”: ”: (q1,q2) iff ([[q1]] ⊗ [[q2]] = 000) and ([[q1]] ⊕ [[q2]] ≠ 111) 

CR(BLUE, GREEN) (001 ⊗ 010 = 000) and (001 ⊕ 010 ≠ 111) 

CR(BLUE, RED) (001 ⊗ 100 = 000) and (001 ⊕ 100 ≠ 111) 

CR(GREEN, RED) (010 ⊗ 100 = 000) and (010 ⊕ 100 ≠ 111) 

 

Mereological “sMereological “sMereological “sMereological “subcontrariesubcontrariesubcontrariesubcontraries” ” ” ” (q1,q2) iff ([[q1]] ⊗ [[q2]] ≠ 000) and ([[q1]] ⊕ [[q2]] = 111) 

SCR(CYANE, YELLOW) (011 ⊗ 110 ≠ 000) and (011 ⊕ 110 = 111) 

SCR(CYANE, MAGENTA) (011 ⊗ 101 ≠ 000) and (011 ⊕ 101 = 111) 

SCR(YELLOW, MAGENTA) (110 ⊗ 101 ≠ 000) and (110 ⊕ 101 = 111) 

 

Mereological “Mereological “Mereological “Mereological “EntailEntailEntailEntailment” = Proper parthood ment” = Proper parthood ment” = Proper parthood ment” = Proper parthood PPPPPPPP2222    (q1, q2) iff ([[q1]] ⊗ [[q2]] = [[q1]]) and 

([[q1]] ⊕ [[q2]] = [[q2]]) 

iff [[q1]] ⊆ [[q2]] 

 

Proper Parthood 

PP(RED, YELLOW) 100 ⊂ 110 

PP(RED, MAGENTA) 100 ⊂ 101 

PP(GREEN, YELLOW) 010 ⊂ 110 

                                                 
2 Instead of using the equivalent of set inclusion, mereology employs the equivalent of PROPER set 
inclusion (otherwise one could say that RED is a part of itself, which stretches our natural intuition of part-
whole (meronym – holonym) relations.  In this respect, mereology is like natural set theory in Seuren’s 
sense. 
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PP(GREEN, CYANE) 010 ⊂ 011 

PP(BLUE, CYANE) 001 ⊂ 011 

PP(BLUE, MAGENTA) 001 ⊂ 101 

 

PP(RED, WHITE) 100 ⊂ 111 

PP(GREEN, WHITE) 010 ⊂ 111 

PP(BLUE, WHITE) 001 ⊂ 111 

 

PP(YELLOW, WHITE) 110 ⊂ 111 

PP(MAGENTA, WHITE) 101 ⊂ 111 

PP(CYANE, WHITE) 011 ⊂ 111 

 

(18) Let us look at the linguistic side of the matter now and consider the status of the 

colour names in the different corners from the perspective of natural vs. non-natural (or 

alternatively nonexisting) lexicalization.  In the colour algebra, the enriched 

representation by means of a Hasse diagram has only two corners  for which 

lexicalization by means of a single term is not a basic natural colour term, namely 011 

(cyane) and 101 (magenta), exactly the equivalents of the two level two corners which 

resisted lexicalization in the algebra for predicate logical operators.  The other two that 

were not lexicalisable in the predicate calculus, are now the locuses of white (111) and 

black (000), respectively. This is a direct consequence of the difference between a 

mereological sum and set-theoretical union: whereas 111 denotes the whole universe in 

the case of predicate logic, it does not denote the whole universe of colours in a 

mereology (which would amount to “RED or GREEN or BLUE, etc.).  Just as the 

mereological sum of GREEN and RED only denotes the combination of the wavelengths 

of GREEN and RED and not the two primaries that enter into it, white only denotes the 

mereological sum of chromatic colours, but none of those chromatic colours 

themselves.  In that sense the mereological sum contains a combination of chromatic 

colours, but does not denote the colours that enter into it. The enriched diagram with 

two extra vertices beyond those available in the Blanché star is therefore crucial for the 

representation of the colour algebra. Not so for predicate logic, for reasons of 

noninformativity specified earlier. 
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Hasse-diagram (Colours): 8 vertices 

3. Conclusion3. Conclusion3. Conclusion3. Conclusion    

 

The algebras of predicate logic and colours are perfectly isomorphic.  The natural 

predicate logic of language has a cognitively deeper counterpart, the natural logic of 

colours. 

 

4. Natural language application4. Natural language application4. Natural language application4. Natural language application    

 

4.1 natural versus non4.1 natural versus non4.1 natural versus non4.1 natural versus non----natural quantifiers (*nand/*nall) andnatural quantifiers (*nand/*nall) andnatural quantifiers (*nand/*nall) andnatural quantifiers (*nand/*nall) and    colour terms (yellow vs. colour terms (yellow vs. colour terms (yellow vs. colour terms (yellow vs. 

“cyane”)“cyane”)“cyane”)“cyane”)  

- Evolution sequence of natural terms for quantifier and colour oppositions  

The incremental  sequence for predicate logic operators as worked out in Jaspers 

(2005) along Peircean lines on the basis of the operator NEC is very similar to the 

Berlin-Kay (1969) incremental sequence for cross-linguistic colour term systems.  

They observed that if a language has three colour terms, they will always be 

dark/black, light/white and red; if another term comes in, it will be green or yellow, 

languages with one more colour will have the one they did not have yet (yellow or 

green) as the next one, and only languages who have yet another colour term will 

have blue, a term which many languages do not possess (cp. the relative infrequency 

of E-corner items noted by Horn 1989) 

 

 

  

  

  

    

    

  

110 101 011 

001 010 100 

000 

111 White 

cyane magenta yellow 

green  

black 

red  blue  

level 2 

level 1 

level 0 

level 3 
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 1 2 3 4 

NEC > sm (or all) > all > some (but not 

all) 

> no 

 

“dark” 

(BLACK+BLUE) 

“light” 

(YELLOW+WHITE+…) 

“red” 

(RED) 

“green” 

(GREEN) 

“blue” 

(BLUE) 

   “yellow” 

(YELLOW) 

 

 

 

 

4.2 4.2 4.2 4.2 cognitive complexity and tcognitive complexity and tcognitive complexity and tcognitive complexity and the generalhe generalhe generalhe generalized Oized Oized Oized O----corner problem corner problem corner problem corner problem     

There are no natural names for colours 101(magenta) and 011 (cyane), just as there are 

no natural simplex names for quantifiers 101 (all or no) and 011 (*nand/*nall).  General 

observation: the basic colours that attempt to incorporate 001 (BLUE/NO) have 

lexicalization trouble or are cognitively less accessible. 
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APPENDIX 1: Colours, Squares and Triangles – some theoretical background notions. 
 

In the debate between the defenders of the classical perspective on the logical square of 

oppositions on the one hand and proponents of a triangular approach on the other 

(Hamilton 1860, Ginzberg 1913, Jespersen 1924: 324-325, Horn 1989: 253, Seuren 

2002: 20-21), an original compromise was reached in work by Jacoby (1950), Blanché 

(1953, 1969), Hegenberg (1957) and Sesmat (1951). Their proposals took the form of a 

logical hexagon in Blanché’s work, in fact a bitriangle derived by supplementing the 

AYE-triangle of contraries with its dual IOU, a triangle of subcontrary relations (Moretti 

2009, 142; Horn 1989; Béziau 2003). The latter system was applied to several arguably 

bitriangular conceptual fields. 

The hypothesis elaborated above is that there is yet another bitriangle which can 

be fruitfully mapped onto the hexagon, namely that of the six colours red, green, blue, 

yellow, magenta and cyane and more specifically of the percepts they embody.  In view 

of Thomas Young’s trichromatic theory of colour vision and its later refinements, it was 

shown that the triangle of contraries consists of the primary colours red-green-blue, 

with red  (= L: Longest wavelength) in the A-corner, M(id wave) green in the Y-corner 

and S(hort wave) blue in the E-corner. The remaining three colours are secondary in that 

at the physical and perceptual level they represent the combined wavelengths – in 

mereological terms: the sum (comparable but not identical to set-theoretical union) of 

the wavelengths – of red and green (= yellow), green and blue (= cyane) and blue and 

red (= magenta) respectively.  
 

 
 

 
 
 

As is well-known from the phenomenon of afterimages (and aspects of Hering’s 

opponent process theory), the secondary triad yellow-cyane-magenta consists of 

complementaries of the primary colours, a pattern of opposition that was shown above 

to be the colour equivalent of contradictoriness relations in the logical square (and 

hexagon) of oppositions.  

This is not to say that there are no differences between the logical and the 

chromatic stars. For one thing, without modification the star is still blatantly deficient 

for the colour system in that such basic colours as black and white have no position in 

it, while it is less immediately obvious that additional vertices are required for the 

logical incarnation of the hexagon.  And how can sense be made of the entailment 

arrows in the colour embodiment of the star, given that at least for colour terms it is 

red blue 

yellow 

magenta 

cyane 

green 
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fairly natural to maintain that they are simply all contrary predicates and that neither 

contradictoriness nor entailment have a role to play in their lexical field?  

To solve the first issue, an appeal is made to a 3D cube or its 2D counterpart, a 

Hasse Diagram, as an alternative to Blanché’s 2D- star-like model. This will enable the 

introduction of the achromatic colours white and black into the system, occupying the 

two extra vertices, more specifically the lattice-theoretical top and bottom of the 

expanded geometrical figure.   

Secondly, the entailment problem was addressed by elaborating a point that 

remained largely implicit in the above account, namely that the relevant system of 

colour oppositions does not concern the synchronic system of colour terms, which from 

a logical perspective is a lexical field of contrary predicates. Rather, the oppositions play 

out at the level of the physics of colour and the nature of colour perception and are 

consequently mereological rather than set-theoretical. This insight can not only be 

illustrated in the additive RGB-system of colour emission but also by switching to the 

subtractive colour system which is operative when we mix paint, for instance. This 

switch has the same properties as conversion in logic. Thus, colour mixing amounts to 

the suppression (mereologically, the product instead of the sum) of certain wavelengths. 

Analogously to the way conversion works in standard logical systems, conversion from 

the additive to the subtractive colour system means that the secondary triad, that of the 

“subcontrary” colours yellow, magenta, cyane now becomes the primary one and that 

the operation employed to compose the remaining three corners by mixing also 

switches, in casu from wavelength sum to wavelength product, where sum and product 

are the known mereological counterparts of union and intersection in set-theory and of 

logical disjunction and logical conjunction in the propositional calculus. To summarize, 

there is an asymmetric mereological containment relationship (cp. proper inclusion in 

set-theory) between colours such as red and yellow, an asymmetrical relationship which 

is at the root of the sense of reversal when we switch from the additive to the 

subtractive system and which is the mereological equivalent of entailment in standard 

logic. 

On the whole, the patterning of different kinds of colour oppositions 

(complementary vs. noncomplementary colours, chromatic versus non-chromatic 

colours, contrary (meronymical) colours versus subcontrary (holonymical) colours) and 

of semantic oppositions in logic is isomorphic on so many counts that it would be 

extremely surprising if there was no cognitive algorithm common to and serving both 

domains. An important question that arises in view of this isomorphy of 

physical/physiological patterns of colour opposition and natural logical patterns of 

opposition more traditionally mapped onto triangles, squares and stars is the issue of 

whether the opposition pattern represents a separate cognitive module that feeds these 

two different cognitive domains or whether it originated in one or the other faculty first 

and was later utilized by the other.  Whatever the answer to this issue, the present 

findings argue against extreme Whorfian relativism.  The oppositions noted and defined 

are perfectly equivalent to those in logic, for which it would be hard to maintain that 
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they are not universal, given that nobody has ever come up with a language that does 

not have quantifiers or propositional operators. And as far as cognitive complexity and 

linguistic ease of lexicalization is concerned: could it be an accident that it is the U and 

the O-corners of the star which are never lexicalized (possibly with a chance exception 

for the O-corner as suggested by Pieter Seuren) in natural logic and get correspondingly 

nonnatural, i.e. constructed or scientific, names such as cyane and magenta in the 

colour cube? Don’t think so (and will later provide arguments based on experiments 

with Munsell colour chips). 
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